Acknowledgement
This work was supported by the R&D Program for Forest Science Technology (Project No. 2021377C10-2123-BD02) provided by the Korea Forest Service (Korea Forestry Promotion Institute) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2018R1A6A1A03024862).
References
- Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. 2021. SARS-CoV-2, COVID-19 and the aging immune system. Nat. Aging 1: 769-782. https://doi.org/10.1038/s43587-021-00114-7
- Li Q, Wang Y, Sun Q, Knopf J, Herrmann M, Lin L, et al. 2022. Immune response in COVID-19: what is next?. Cell Death Differ. 29: 1107-1122. https://doi.org/10.1038/s41418-022-01015-x
- Vishwakarma S, Panigrahi C, Barua S, Sahoo M, Mandliya S. 2022. Food nutrients as inherent sources of immunomodulation during COVID-19 pandemic. Lebensm. Wiss. Technol. 158: 113154.
- Han JW, Shim DW, Shim EJ, Kim MK, Shin YK, Kwak SB, et al. 2015. Syneilesis palmata (Thunb.) Maxim. extract attenuates inflammatory responses via the regulation of TRIF-dependent signaling and inflammasome activation. J. Ethnopharmacol. 166: 1-4. https://doi.org/10.1016/j.jep.2015.02.056
- Lee KH, Choi SU, Lee KR. 2005. Sesquiterpenes from Syneilesis palmata and their cytotoxicity against human cancer cell lines in vitro. Arch. Pharm. Res. 28: 280-284. https://doi.org/10.1007/BF02977792
- Heo BG, Chon SU, Park YJ, Bae JH, Park SM, Park YS, et al. 2009. Antiproliferative activity of Korean wild vegetables on different human tumor cell lines. Plant Foods Hum. Nutr. 64: 257-263. https://doi.org/10.1007/s11130-009-0138-8
- Min BS, Kim YH, Tomiyama M, Nakamura N, Miyashiro H, Otake T, et al. 2001. Inhibitory effects of Korean plants on HIV-1 activities. Phytother. Res. 15: 481-486. https://doi.org/10.1002/ptr.751
- Yi Y, Zhang M, Liao S, Zhang R, Deng Y, Wei Z, et al. 2012. Structural features and immunomodulatory activities of polysaccharides of logan pulp. Carbohydr. Polym. 87: 636-643. https://doi.org/10.1016/j.carbpol.2011.08.034
- Hirayama D, Iida T, Nakase H. 2018. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19: 92.
- Sieweke MH, Allen JE. 2013. Beyond stem cells: self-renewal of differentiated macrophages. Science 342: 1242974.
- Wang YL, Yang JJ, Ni W. 2022. Immunomodulatory effects of sinensetin on macrophage and Cyclophosphamide-induced Immunosuppression in mice. Die Pharmazie 77: 147-151.
- Duque GA, Descoteaux A. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5: 491.
- Mukherjee S, Karmakar S, Babu SPS. 2016. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz. J. Infect. Dis. 20: 193-204. https://doi.org/10.1016/j.bjid.2015.10.011
- Iwasaki A, Medzhitov R. 2004. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5: 987-995. https://doi.org/10.1038/ni1112
- Kawai T, Akira S. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637-650. https://doi.org/10.1016/j.immuni.2011.05.006
- Park BS, Lee JO. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45: 66.
- Medzhitov R. 2007. TLR-mediated innate immune recognition. Semin. Immunol. 19: 1-2. https://doi.org/10.1016/j.smim.2007.02.001
- Li Y, Meng T, Hao N, Tao H, Zou S, Li M, et al. 2017. Immune regulation mechanism of Astragaloside IV on RAW264.7 cells through activating the NF-κB/MAPK signaling pathway. Int. Immunopharmacol. 49: 38-49. https://doi.org/10.1016/j.intimp.2017.05.017
- Wu MY, Lu JH. 2020. Autophagy and macrophage functions: inflammatory response and phagocytosis. Cells 9: 70.
- Lee JC, Laydon JT, McDonnell PC. Gallagher TF, Kumar S, Green D, et al. 1994. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739-746. https://doi.org/10.1038/372739a0
- Nick JA, Avdi NJ, Gerwins P, Johnson GL, Worthen GS. 1996. Activation of a p38 mitogen-activated protein kinase in human neutrophils by lipopolysaccharide. J. Immunol. 156: 4867-4875. https://doi.org/10.4049/jimmunol.156.12.4867
- Rogov V, Dotsch V, Johansen T, Kirkin V. 2014. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53: 167-178. https://doi.org/10.1016/j.molcel.2013.12.014
- Yoshii SR, Mizushima N. 2017. Monitoring and measuring autophagy. Int. J. Mol. Sci. 18: 1865.
- Andersen AN, Landsverk OJ, Simonsen A, Bogen B, Corthay A, Oynebraten I. 2016. Coupling of HIV-1 antigen to the selective autophagy receptor SQSTM1/p62 promotes T-cell-mediated immunity. Front. Immunol. 7: 167.
- Xu Z, Lin R, Hou X, Wu J, Zhao W, Ma H, et al. 2020. Immunomodulatory mechanism of a purified polysaccharide isolated from Isaria cicadae Miquel on RAW264.7 cells via activating TLR4-MAPK-NF-κB signaling pathway. Int. J. Biol. Macromol. 164: 432-4338. https://doi.org/10.1016/j.ijbiomac.2020.09.035
- Chou YJ, Lin CC, Dzhagalov I, Chen NJ, Lin CH, Lin CC, et al. 2020. Vaccine adjuvant activity of a TLR4-activating synthetic glycolipid by promoting autophagy. Sci. Rep. 10: 8422.