DOI QR코드

DOI QR Code

Development of magnetic field measurement system for AMS cyclotron

  • Ho Namgoong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Hyojeong Choi (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Mitra Ghergherehchi (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Donghyup Ha (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Mustafa Mumyapan (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jong-Seo Chai (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jongchul Lee (Accelerator and Radioisotope Development Team, Korea Atomic Energy Research Institute) ;
  • Hoseung Song (Department of Electronic Engineering, Catholic Kwandong University)
  • Received : 2022.07.10
  • Accepted : 2023.05.14
  • Published : 2023.08.25

Abstract

A high-accuracy magnetic field measurement device based on a cyclotron is being developed for accelerator mass spectrometry (AMS). In this study, a magnetic field measurement device consisting of a Hall probe sensor, piezo-motor, and step motor was developed to measure the magnetic field of the AMS cyclotron magnet. The Hall probe sensor was calibrated to achieve positional accuracy by using polar coordinates. The measurement results between the ratchet gear and piezo-motor, which are the instruments used for driving the measurement device, were analyzed. The measurement result of the device with a piezo-motor exhibits a difference of 5 Gauss (0.04%) as compared with the simulation result.

Keywords

Acknowledgement

This paper was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning. [2017M2A2A4A02020347, Development of an Accelerator Mass Spectrometer based on Artificial Intelligence].

References

  1. R. Hellborg, G. Skog, Accelerator mass spectrometry, Mass Spectrom. Rev. 27 (5) (2008) 398-427. https://doi.org/10.1002/mas.20172
  2. W.E. Kieser, X.L. Zhao, I.D. Clark, R.J. Cornett, A.E. Litherland, M. Klein, et al., The Andre E. Lalonde AMS Laboratory-the new accelerator mass spectrometry facility at the University of Ottawa, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 361 (2015) 110-114. https://doi.org/10.1016/j.nimb.2015.03.014
  3. J.J. Livingood, D.V. Nostrand, T.F. Zipf, Principles of cyclic particle accelerators, Phys. Today 15 (5) (1962) 57.
  4. S.Y. Jung, H.W. Kim, M. Ghergherehchi, J.K. Park, J.S. Chai, S.H. Kim, Central region of SKKUCY-9 compact cyclotron, J. Instrum. 9 (4) (2014), T04005.
  5. J. Zhong, T. Zhang, M. Li, Y. Lv, T. Cui, J. Yang, J. Xing, The physics design of magnet in 14 MeV cyclotron, Sci. China Phys. Mech. Astron. 54 (2) (2011) 266-270. https://doi.org/10.1007/s11433-011-4551-2
  6. J. Kang, B.H. Hong, D.H. An, I.S. Jung, K.U. Kang, Magnet design of the superconducting cyclotron for carbon therapy, IEEE Trans. Appl. Supercond. 22 (3) (2011), 4401104-4401104. https://doi.org/10.1109/TASC.2011.2174567
  7. K.H. Park, Y.G. Jung, D.E. Kim, B.K. Kang, M. Yoon, J.S. Chai, Y.S. Kim, Field mapping system for cyclotron magnet, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 545 (3) (2005) 533-541. https://doi.org/10.1016/j.nima.2005.02.009
  8. S. Cirkovic, A. Z. Ilic, A. Dobrosavljevic, R. Balvanovic, J.L. Ristic-Djurovic, Minimization of the measurement errors induced by the cyclotron magnetic field measurement system, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 679 (2012) 54-60. https://doi.org/10.1016/j.nima.2012.03.018
  9. F.S. Grillet, B.F. Milton, D. Montgomery, C. Precision, Magnetic field mapping of the best 70 MeV cyclotron, in: Proceedings of Cyclotrons, 2013, pp. 239-241.
  10. B.N. Lee, H.W. Kim, J.H. Oh, K.H. Park, J.S. Chai, Development of a magnetic field measurement instrument for compact cyclotrons, J. Kor. Phys. Soc. 61 (2) (2012) 197-202. https://doi.org/10.3938/jkps.61.197
  11. M. Fan, X. Zhang, T. Zhang, C. Liang, Q. Tao, Z. Chao, et al., Measurement and adjustment of CIAE medical cyclotron magnet, in: Proceedings of International Conference On Particle Accelerators, IEEE, 1993, May, pp. 2841-2843.
  12. T. Hemsel, J. Wallaschek, Survey of the present state of the art of piezoelectric linear motors, Ultrasonics 38 (1-8) (2000) 37-40. https://doi.org/10.1016/S0041-624X(99)00143-2
  13. K. Spanner, B. Koc, Piezoelectric motors, an overview, in: Actuators, vol. 5, MDPI, 2016, February, p. 6, 1.
  14. https://www.group3technology.com/product-page/lpt-141-2s.
  15. L. Bottura, K.N. Henrichsen, Field Measurements (No. CERN-LHC-2002-020-MTA), CERN, 2002.
  16. http://piezo-tech.com/portfolio-item/pumr-40e/?lang=en.
  17. https://www.3ds.com/products-services/simulia/training/coursedescriptions/introduction-to-opera-3d/.
  18. https://gmw.com/wp-content/uploads/2019/03/ML_DS_pt2025.pdf.