DOI QR코드

DOI QR Code

Application of advanced spectral-ratio radon background correction in the UAV-borne gamma-ray spectrometry

  • Jigen Xia (China Research Institute of Radiowave Propagation) ;
  • Baolin Song (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Yi Gu (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Zhiqiang Li (China Research Institute of Radiowave Propagation) ;
  • Jie Xu (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Liangquan Ge (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Qingxian Zhang (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Guoqiang Zeng (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Qiushi Liu (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Xiaofeng Yang (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology)
  • Received : 2022.11.03
  • Accepted : 2023.04.20
  • Published : 2023.08.25

Abstract

The influence of the atmospheric radon background on the airborne gamma spectrum can seriously affect researchers' judgement of ground radiation information. However, due to load and endurance, unmanned aerial vehicle (UAV)-borne gamma-ray spectrometry is difficulty installing upward-looking detectors to monitor atmospheric radon background. In this paper, an advanced spectral-ratio method was used to correct the atmospheric radon background for a UAV-borne gamma-ray spectrometry in Inner Mongolia, China. By correcting atmospheric radon background, the ratio of the average count rate of U window in the anomalous radon zone (S5) to that in other survey zone decreased from 1.91 to 1.03, and the average uranium content in S5 decreased from 4.65 mg/kg to 3.37 mg/kg. The results show that the advanced spectral-ratio method efficiently eliminated the influence of the atmospheric radon background on the UAV-borne gamma-ray spectrometry to accurately obtain ground radiation information in uranium exploration. It can also be used for uranium tailings monitoring, and environmental radiation background surveys.

Keywords

Acknowledgement

The authors acknowledge the financial support by Stable-Support Scientific Project of China Research Institute of Radio-wave Propagation (GrantNo.A132007W06), the National Science Foundation of China (Project No.42127807; 12105043), the Science Foundation of Sichuan (Project No. 23NSFSCC0116) and Sichuan Science and Technology Program (Project No. 2020YJ0334).

References

  1. B.L. Dickson, Recent advances in aerial gamma-ray surveying, J. Environ. Radioact. 76 (2004) 225-236, https://doi.org/10.1016/j.jenvrad.2004.03.028.
  2. F. Li, Z. Cheng, C. Tian, H. Xiao, M. Zhang, L. Ge, Progress in recent airborne gamma ray spectrometry measurement technology, Appl. Spectrosc. Rev. 56 (2021) 255-288, https://doi.org/10.1080/05704928.2020.1768107.
  3. S. van der Veeke, J. Limburg, R.L. Koomans, M. Soderstrom, E.R. van der Graaf, Optimizing gamma-ray spectrometers for uav-borne surveys with geophysical applications, J. Environ. Radioact. 237 (2021), 106717, https://doi.org/10.1016/j.jenvrad.2021.106717.
  4. C.M. Chen, L.E. Sinclair, R. Fortin, M. Coyle, C. Samson, In-flight performance of the advanced radiation detector for uav operations (arduo), Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 954 (2020), 161609, https://doi.org/10.1016/j.nima.2018.11.068.
  5. S. van der Veeke, J. Limburg, R.L. Koomans, M. Soderstrom, S.N. de Waal, E.R. van der Graaf, Footprint and height corrections for uav-borne gamma-ray spectrometry studies, J. Environ. Radioact. 231 (2021), 106545, https://doi.org/10.1016/j.jenvrad.2021.106545.
  6. L.R. Pinto, A. Vale, Y. Brouwer, J. Borbinha, J. Corisco, R. Ventura, A.M. Silva, A. Mourato, G. Marques, Y. Romanets, S. Sargento, B. Goncalves, Radiological scouting, monitoring and inspection using drones, Sensors-Basel 21 (2021) 3143, https://doi.org/10.3390/s21093143.
  7. Y. Cao, X. Tang, P. Wang, J. Meng, X. Huang, L. Wen, D. Chen, Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment nh-uav based on a ratio processing method, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 797 (2015) 290-296, https://doi.org/10.1016/j.nima.2015.07.012.
  8. P. Gong, X. Tang, X. Huang, P. Wang, L. Wen, X. Zhu, C. Zhou, Locating lost radioactive sources using a uav radiation monitoring system, Appl. Radiat. Isot. 150 (2019) 1-13, https://doi.org/10.1016/j.apradiso.2019.04.037.
  9. A. Parshin, V. Morozov, N. Snegirev, E. Valkova, F. Shikalenko, Advantages of gamma-radiometric and spectrometric low-altitude geophysical surveys by unmanned aerial systems with small scintillation detectors, Appl. Sci. 11 (2021) 2247, https://doi.org/10.3390/app11052247.
  10. M. Lowdon, P.G. Martin, M.W.J. Hubbard, M.P. Taggart, D.T. Connor, Y. Verbelen, P.J. Sellin, T.B. Scott, Evaluation of scintillator detection materials for application within airborne environmental radiation monitoring, Sensors-Basel 19 (2019) 3828, https://doi.org/10.3390/s19183828.
  11. X. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. Wen, D. Chen, Efficiency calibration and minimum detectable activity concentration of a real-time uav airborne sensor system with two gamma spectrometers, Appl. Radiat. Isot. 110 (2016) 100-108, https://doi.org/10.1016/j.apradiso.2016.01.008.
  12. J.W. Macfarlane, O.D. Payton, A.C. Keatley, G.P.T. Scott, H. Pullin, R.A. Crane, M. Smilion, I. Popescu, V. Curlea, T.B. Scott, Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies, J. Environ. Radioact. 136 (2014) 127-130, https://doi.org/10.1016/j.jenvrad.2014.05.008.
  13. P.G. Martin, D.T. Connor, N. Estrada, A. El-Turke, D. Megson-Smith, C.P. Jones, D.K. Kreamer, T.B. Scott, Radiological identification of near-surface mineralogical deposits using low-altitude unmanned aerial vehicle, Remote Sens.-Basel 12 (2020) 3562, https://doi.org/10.3390/rs12213562.
  14. O. Aalek, M. Matolin, L. Gryc, Mapping of radiation anomalies using uav mini-airborne gamma-ray spectrometry, J. Environ. Radioact. 182 (2018) 101-107, https://doi.org/10.1016/j.jenvrad.2017.11.033.
  15. P.G. Martin, O.D. Payton, J.S. Fardoulis, D.A. Richards, T.B. Scott, The use of unmanned aerial systems for the mapping of legacy uranium mines, J. Environ. Radioact. 143 (2015) 135-140, https://doi.org/10.1016/j.jenvrad.2015.02.004.
  16. Y. Sanada, T. Torii, Aerial radiation monitoring around the fukushima dai-ichi nuclear power plant using an unmanned helicopter, J. Environ. Radioact. (2015) 294-299.
  17. Y. Sanada, T. Orita, T. Torii, Temporal variation of dose rate distribution around the fukushima daiichi nuclear power station using unmanned helicopter, Appl. Radiat. Isot. : including data, instrumentation and methods for use in agriculture, industry and medicine (2016) 308-316.
  18. P. Jurza, I. Campbell, P. Robinson, R. Wackerle, P. Cunneen, B. Pavlik, Use of214 pb photopeaks for radon removal: utilising current airborne gamma-ray spectrometer technology and data processing, Explor. Geophys. 36 (2018) 322-328, https://doi.org/10.1071/EG05322.
  19. Iaea, Airborne gamma-ray spectrometer surveying 323 (1991) 67-70. IAEA Technical report.
  20. B.R.S. Minty, Multichannel models for the estimation of radon background in airborne gamma-ray spectrometry, Geophysics 63 (1998) 1986-1996, https://doi.org/10.1190/1.1444492.
  21. B.R.S. Minty, P. Mcfadden, B.L.N. Kennett, Multichannel processing for airborne gamma-ray spectrometry, Geophysics 63 (1998) 1971-1985, https://doi.org/10.1190/1.1444491.
  22. Y. Gu, H. Lu, M. Wang, L. Ge, Q. Zhang, Advanced spectral-ratio radon background estimate in airborne gamma-ray spectrometry and calibration technology, J. Kor. Phys. Soc. 76 (2020) 392-400, https://doi.org/10.3938/jkps.76.392.
  23. B.R.S. Minty, Multichannel models for the estimation of radon background in airborne gamma-ray spectrometry(article), Geophysics (2019) 1986-1996.