DOI QR코드

DOI QR Code

Investigation of the concentration characteristic of RCS during the boration process using a coupled model

  • Xiangyu Chi (Institute of Thermal Science and Technology, Shandong University) ;
  • Shengjie Li (China Nuclear Power Engineering Co., Ltd.) ;
  • Mingzhou Gu (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd) ;
  • Yaru Li (Institute of Thermal Science and Technology, Shandong University) ;
  • Xixi Zhu (Institute of Thermal Science and Technology, Shandong University) ;
  • Naihua Wang (Institute of Thermal Science and Technology, Shandong University)
  • Received : 2022.12.19
  • Accepted : 2023.05.05
  • Published : 2023.08.25

Abstract

The fluid retention effect of the Volume Control Tank (VCT) leads to a long time delay in Reactor Coolant System (RCS) concentration during the boration process. A coupled model combining a lumped-parameter sub-model and a computational fluid dynamics sub-model is currently used to investigate the concentration dynamic characteristic of RCS during the boration process. This model is validated by comparison with experimental data, and the predicted results show excellent agreement with experimental data. We provide detailed fields in VCT and concentration variations of RCS to study the interaction between mixing in VCT and the transient responses of RCS. Moreover, the impacts of the inlet flow rate, inlet nozzle diameter, original concentration, and replenishing temperature of VCT on the RCS concentration characteristic are studied. The inlet flow rate and nozzle diameter of VCT remarkably affect the RCS concentration characteristic. Too-large or too-small inlet flow rates and nozzle diameters will lead to unacceptable long delays. In this work, the optimal inlet flow rate and nozzle diameter of VCT are 5 m3/h and 58.8 mm, respectively. Besides, the impacts of the original concentration and replenishing temperature of VCT are negligible under normal operating conditions.

Keywords

Acknowledgement

The scientific calculations in this paper have been done on the HPC Cloud Platform of Shandong University.

References

  1. H. Yu, H. Ju, M. Wang, J. Zhang, S. Qiu, W. Tian, G.H. Su, Study of boron diffusion models and dilution accidents in nuclear reactor: a comprehensive review, Ann. Nucl. Energy 148 (2020), 107659, https://doi.org/10.1016/j.anucene.2020.107659.
  2. O.E. Ozdemir, M.N. Avramova, K. Sato, Multi-dimensional boron transport modeling in subchannel approach: Part I. Model selection, implementation and verification of COBRA-TF boron tracking model, Nucl. Eng. Des. 278 (2014) 701-712, https://doi.org/10.1016/j.nucengdes.2013.02.031.
  3. H. Yu, M. Wang, R. Cai, D. Zhang, W. Tian, S. Qiu, G.H. Su, Development and validation of boron diffusion model in nuclear reactor core subchannel analysis, Ann. Nucl. Energy 130 (2019) 208-217, https://doi.org/10.1016/j.anucene.2019.02.046.
  4. S.Z. Li, X.J. Liu, Development of boron tracking and boron hideout (CRUD) model based on subchannel approach, Nucl. Eng. Des. 338 (2018) 166-175, https://doi.org/10.1016/j.nucengdes.2018.08.023.
  5. Q. Zhang, J. Su, W. Du, H. Yuan, F. Yang, S. Tan, Experimental study on mixing phenomenon inside reactor down-comer under single-loop injection using laser induced fluorescence, Prog. Nucl. Energy 117 (2019), 103046, https://doi.org/10.1016/j.pnucene.2019.103046.
  6. L. Ye, H. Yu, M. Wang, Q. Wang, W. Tian, S. Qiu, G.H. Su, CFD/RELAP5 coupling analysis of the ISP No. 43 boron dilution experiment, Nucl. Eng. Technol. 54 (2022) 97-109, https://doi.org/10.1016/j.net.2021.07.047.
  7. S.R.V. Nascimento, C.A.B.O. Lira, C.M.F. Lapa, F.R.A. Lima, J.L. Bezerra, M.A.B. Silva, M.E.M. Otero, C.R.G. Hernandez, Implementing a test facility in reduced scale for analysis of boron dispersion in a pressurizer of an integral compact and modular reactor, Ann. Nucl. Energy 105 (2017) 259-265, https://doi.org/10.1016/j.anucene.2017.03.027.
  8. J.D.L. Bezerra, C.A.B.D.O. Lira, A.C.D.O. Barroso, F.R.D.A. Lima, M.A.B. Da Silva, Study of the boron homogenizing process employing an experimental low-pressure bench simulating the IRIS reactor pressurizer-Part I, Ann. Nucl. Energy 53 (2013) 254-258, https://doi.org/10.1016/j.anucene.2012.10.005.
  9. J.D.L. Bezerra, C.A.B.D.O. Lira, A.C.D.O. Barroso, F.R.D.A. Lima, M.A.B. Da Silva, Study of the boron homogenizing process employing an experimental low-pressure bench simulating the IRIS reactor pressurizer - Part II, Ann. Nucl. Energy 62 (2013) 558-563, https://doi.org/10.1016/j.anucene.2013.02.028.
  10. H. Wang, M. Zhang, J. Li, J. Wang, Numerical study on CMT boron replenishment strategy for an AP1000 nuclear power unit, Nucl. Eng. Technol. 54 (2022) 2321-2328, https://doi.org/10.1016/j.net.2022.01.001.
  11. J. Li, M. Wang, D. Fang, J. Wang, D. Liu, W. Tian, S. Qiu, G.H. Su, CFD simulation on the transient process of coolant mixing phenomenon in reactor pressure vessel, Ann. Nucl. Energy 153 (2021), 108045, https://doi.org/10.1016/j.anucene.2020.108045.
  12. D. Fang, M. Wang, Y. Duan, J. Li, G. Qiu, W. Tian, C. Zuo, G.H. Su, S. Qiu, Fullscale numerical study on the flow characteristics and mal-distribution phenomena in SG steam-water separation system of an advanced PWR, Prog. Nucl. Energy 118 (2020), 103075, https://doi.org/10.1016/j.pnucene.2019.103075.
  13. M. Wang, T. Feng, D. Fang, T. Hou, W. Tian, G.H. Su, S. Qiu, Numerical study on the thermal stratification characteristics of AP1000 pressurizer surge line, Ann. Nucl. Energy 130 (2019) 8-19, https://doi.org/10.1016/j.anucene.2019.01.054.
  14. T. Feng, D. Zhang, P. Song, W. Tian, W. Li, G.H. Su, S. Qiu, Numerical research on water hammer phenomenon of parallel pump-valve system by coupling FLUENT with RELAP5, Ann. Nucl. Energy 109 (2017) 318-326, https://doi.org/10.1016/j.anucene.2017.05.049.
  15. T. Feng, M. Wang, P. Song, L. Liu, W. Tian, G.H. Su, S. Qiu, Numerical research on thermal mixing characteristics in a 45-degree T-junction for two-phase stratified flow during the emergency core cooling safety injection, Prog. Nucl. Energy 114 (2019) 91-104, https://doi.org/10.1016/j.pnucene.2019.03.009.
  16. M. Wang, D. Fang, Y. Xiang, Y. Fei, Y. Wang, W. Ren, W. Tian, G.H. Su, S. Qiu, Study on the coolant mixing phenomenon in a 45 T junction based on the thermal-mechanical coupling method, Appl. Therm. Eng. 144 (2018) 600-613, https://doi.org/10.1016/j.applthermaleng.2018.08.073.
  17. S. Abe, E. Studer, M. Ishigaki, Y. Sibamoto, T. Yonomoto, Stratification breakup by a diffuse buoyant jet: the MISTRA HM1-1 and 1-1bis experiments and their CFD analysis, Nucl. Eng. Des. 331 (2018) 162-175, https://doi.org/10.1016/j.nucengdes.2018.01.050.
  18. Y. Yu, F. Niu, S. Wang, Y. Hu, One-dimensional model for containment in AP1000 nuclear power plant based on thermal stratification, Appl. Therm. Eng. 70 (2014) 25-32, https://doi.org/10.1016/j.applthermaleng.2014.04.070.
  19. S. Abe, M. Ishigaki, Y. Sibamoto, T. Yonomoto, Experimental and numerical study on density stratification erosion phenomena with a vertical buoyant jet in a small vessel, Nucl. Eng. Des. 303 (2016) 203-213, https://doi.org/10.1016/j.nucengdes.2016.03.022.
  20. M. Ishigaki, S. Abe, A. Hamdani, Y. Hirose, Numerical analysis of natural convection behavior in density stratification induced by external cooling of a containment vessel, Ann. Nucl. Energy 168 (2022), 108867, https://doi.org/10.1016/j.anucene.2021.108867.
  21. A. Dahash, F. Ochs, M.B. Janetti, W. Streicher, Advances in seasonal thermal energy storage for solar district heating applications: a critical review on large-scale hot-water tank and pit thermal energy storage systems, Appl. Energy 239 (2019) 296-315, https://doi.org/10.1016/j.apenergy.2019.01.189.
  22. Y.P. Chandra, T. Matuska, Stratification analysis of domestic hot water storage tanks: a comprehensive review, Energy Build. 187 (2019) 110-131, https://doi.org/10.1016/j.enbuild.2019.01.052.
  23. J. Fan, S. Furbo, Thermal stratification in a hot water tank established by heat loss from the tank, Sol. Energy 86 (2012) 3460-3469, https://doi.org/10.1016/j.solener.2012.07.026.
  24. A. Li, F. Cao, W. Zhang, B. Shi, H. Li, Effects of different thermal storage tank structures on temperature stratification and thermal efficiency during charging, Sol. Energy 173 (2018) 882-892, https://doi.org/10.1016/j.solener.2018.08.025.
  25. B. Kurs, un, K. Okten, Effect of rectangular hot water tank position and aspect ratio on thermal stratification enhancement, Renew. Energy 116 (2018) 639-646, https://doi.org/10.1016/j.renene.2017.10.013.
  26. Z. Yang, H. Chen, L. Wang, Y. Sheng, Y. Wang, Comparative study of the influences of different water tank shapes on thermal energy storage capacity and thermal stratification, Renew. Energy 85 (2016) 31-44, https://doi.org/10.1016/j.renene.2015.06.016.
  27. Z. Wang, H. Zhang, B. Dou, H. Huang, W. Wu, Z. Wang, Experimental and numerical research of thermal stratification with a novel inlet in a dynamic hot water storage tank, Renew. Energy 111 (2017) 353-371, https://doi.org/10.1016/j.renene.2017.04.007.
  28. I.J. Moncho-Esteve, M. Gasque, P. Gonzalez-Altozano, G. Palau-Salvador, Simple inlet devices and their influence on thermal stratification in a hot water storage tank, Energy Build. 150 (2017) 625-638, https://doi.org/10.1016/j.enbuild.2017.06.012.
  29. J. Dragsted, S. Furbo, M. Dannemand, F. Bava, Thermal stratification built up in hot water tank with different inlet stratifiers, Sol. Energy 147 (2017) 414-425, https://doi.org/10.1016/j.solener.2017.03.008.
  30. L. Gao, H. Lu, B. Sun, D. Che, L. Dong, Numerical and experimental investigation on thermal stratification characteristics affected by the baffle plate in thermal storage tank, J. Energy Storage 34 (2021), 102117, https://doi.org/10.1016/j.est.2020.102117.
  31. O. Abdelhak, H. Mhiri, P. Bournot, CFD analysis of thermal stratification in domestic hot water storage tank during dynamic mode, Build. Simulat. 8 (2015) 421-429, https://doi.org/10.1007/s12273-015-0216-9.
  32. M. Alencar De Sa Magalhaes, C.A. Brayner De Oliveira Lira, M.A. Bezerra Da Silva, J. De Lima Bezerra, F.R. De Andrade Lima, Boron transient effects on the behavior of IRIS reactor using dynamic modeling, Prog. Nucl. Energy 69 (2013) 44-52, https://doi.org/10.1016/j.pnucene.2013.05.006.
  33. M. Wang, Y. Wang, W. Tian, S. Qiu, G.H. Su, Recent progress of CFD applications in PWR thermal hydraulics study and future directions, Ann. Nucl. Energy 150 (2021), 107836, https://doi.org/10.1016/j.anucene.2020.107836.
  34. I. Khan, M. Wang, Y. Zhang, W. Tian, G. Su, S. Qiu, Two-phase bubbly flow simulation using CFD method: a review of models for interfacial forces, Prog. Nucl. Energy 125 (2020), 103360, https://doi.org/10.1016/j.pnucene.2020.103360.
  35. A. Hamdani, S. Abe, M. Ishigaki, Y. Sibamoto, T. Yonomoto, CFD analysis on stratification dissolution and breakup of the air-helium gas mixture by natural convection in a large-scale enclosed vessel, Prog. Nucl. Energy 153 (2022), 104415, https://doi.org/10.1016/j.pnucene.2022.104415.
  36. I. Gallego-Marcos, D. Grishchenko, P. Kudinov, Thermal stratification and mixing in a Nordic BWR pressure suppression pool, Ann. Nucl. Energy 132 (2019) 442-450, https://doi.org/10.1016/j.anucene.2019.04.054.
  37. W. Wagner, A. Pruss, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data 31 (2002) 387-535, https://doi.org/10.1063/1.1461829.
  38. I.M. Abdulagatov, N.D. Azizov, Densities and apparent molar volumes of aqueous H3BO3 solutions at temperatures from 296 to 573 K and at pressures up to 48 MPa, J. Solut. Chem. 33 (2004) 1305-1331, https://doi.org/10.1007/s10953-004-7142-2.
  39. A.V. Morozov, A.V. Pityk, A.R. Sahipgareev, A.S. Shlepkin, Experimental study of the thermophysical properties of boric acid solutions at the parameters typical of the WWER emergency mode, J. Phys. Conf. Ser. 1128 (2018), 012103, https://doi.org/10.1088/1742-6596/1128/1/012103.
  40. N.K. Cakmak, Experimental study of thermal conductivity of boric acid-water solutions, Heat Tran. Res. 50 (2019) 1675-1684, https://doi.org/10.1615/HeatTransRes.2019029377.
  41. M. He, C. Su, X. Liu, X. Qi, Isobaric heat capacity of boric acid solution, J. Chem. Eng. Data 59 (2014) 4200-4204, https://doi.org/10.1021/je500897b.
  42. S. Perevoznikov, Y. Shvetsov, A. Kamayev, I. Pakhomov, V. Borisov, G. Pazin, O. Mirzeabasov, O. Korzun, Modeling of hydrodynamic processes at a large leak of water into sodium in the fast reactor coolant circuit, Nucl. Eng. Technol. 48 (2016) 1162-1173, https://doi.org/10.1016/j.net.2016.04.010.
  43. E. Bumrungthaichaichan, A. Namkanisorn, S. Wattananusorn, CFD modelling of pump-around jet mixing tanks: a discrepancy in concentration profiles, J. Chin. Inst. Eng. 41 (2018) 612-621, https://doi.org/10.1080/02533839.2018.1530956.
  44. T.A.S. Vieira, G.P. Barros, D. Campolina, V. Vasconcelos, A.A. Campagnole dos Santos, Study of a fine-mesh 1:1 Computational Fluid Dynamics e Monte Carlo neutron transport coupling method with discretization uncertainty estimation, Ann. Nucl. Energy 148 (2020), 107718, https://doi.org/10.1016/j.anucene.2020.107718.
  45. R.B. McCleskey, Electrical conductivity of electrolytes found in natural waters from (5 to 90)℃, J. Chem. Eng. Data 56 (2011) 317-327, https://doi.org/10.1021/je101012n.
  46. M. Laliberte, W.E. Cooper, Model for calculating the density of aqueous electrolyte solutinos, J. Chem. Eng. Data 49 (2004) 1141-1151, https://doi.org/10.1021/je0498659.
  47. M. Laliberte, Model for calculating the viscosity of aqueous solutions, J. Chem. Eng. Data 52 (2007) 321-335, https://doi.org/10.1021/je0604075.
  48. Y.R. Li, H. Zhang, L. Zhang, C.M. Wu, Three-dimensional numerical simulation of double-diffusive Rayleigh-Benard convection in a cylindrical enclosure of aspect ratio 2, Int. J. Heat Mass Tran. 98 (2016) 472-483, https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.026.