과제정보
이 논문은 2022 년도 정부(과학기술정보통신부)의 재원으로 한국지능정보사회진흥원의 지원을 받아 수행된 연구임 (No. 2022-데이터-위 184, 3-12. 실내측위를 위한 융합데이터셋 구축)
참고문헌
- Korea Innovation Foundation, "Indoor location information technology," promising market Issue Report, Korea Innovation Foundation, 2021.
- H. M. Noh, Y. J. Oh, N. Y. Lee, and W. J. Shin. "A Survey of Deep Learning-Assisted Indoor Localization with Wi-Fi Fingerprinting: Current Status and Research Challenges," The Journal of Korean Institute of Communications and Information Sciences, Vol. 46, No. 5, pp. 848-862, Feb. 2021. https://doi.org/10.7840/kics.2021.46.5.848
- D. S. Han, S. H. Jeong. "Global indoor location recognition and indoor and outdoor integrated navigation system," The Journal of The Korean Institute of Communication Sciences, Vol. 32, No. 2, pp. 89-97. Feb. 2015.
- J. J. Ko, J. Y. Lee, Y. G. Mun, and Y. G. Cho, "Indoor and outdoor wireless positioning technology trends and prospects," KEIT PD Issue Report, Vol. 19-10, No. 3, pp. 65-83, Oct. 2019.
- R. Sheikhpour, M. A. Sarram, S. Gharaghani and M. A. Z. Chahooki, "A Survey on semisupervised feature selection methods," Pattern Recognition, vol. 64, pp. 141-158, Apr. 2017. https://doi.org/10.1016/j.patcog.2016.11.003
- J. H. Seong, "End-to-end-based Wi-Fi RTT network structure design for positioning stabilization," Journal of Korea Multimedia Society, Vol. 24, No. 5, pp. 676-683, May. 2021. https://doi.org/10.9717/KMMS.2020.24.5.676
- L. Choi, "Ultra-precise indoor positioning technology using deep learning-based indoor geomagnetic field," The Journal of The Korean Institute of Communication Sciences, Vol. 37, No. 12, pp. 51-58. Nov. 2020.
- E. S. Lohan, J. Torres-Sospedra, H. Leppakoski, P. Richter, Z. Peng, and J. Huerta, "Wi-Fi crowdsourced fingerprinting dataset for indoor positioning," Data, 2017.
- H. W. An, N. M. Moon, "Artificial intelligence-based indoor positioning technology trends and prospects," Broadcasting and Media Magazine Vol. 25, No. 1, pp. 75-82, Jan. 2020.
- B. G. Kim, K. J. Li, and H. K. Kang. "Generation of Indoor Network by Crowdsourcing," Journal of Korea spatial information society, Vol. 23, No. 1, pp. 49-57, Feb. 2015. https://doi.org/10.12672/ksis.2015.23.1.049
- D. J. Kim, C. G. Hwang, and C. P. Yoon. "Learning data preprocessing technique for improving indoor positioning performance based on machine learning," Journal of the Korea Institute of Information and Communication Engineering, Vol. 24, No. 11, pp. 1528-1533, Oct. 2020. https://doi.org/10.6109/JKIICE.2020.24.11.1528
- Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735