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Abstract 
Requirements traceability link information is the basis for determining whether requirement change 

requested throughout the software development life cycle should be reflected in the system. Setting up 

complete requirements traceability links requires considerable effort. However, the commensurate 

benefits can be obtained in later development or further maintenance phases. For this reason, setting up 

and managing requirements traceability links in the software development phase are tasks that cause 

considerable resistance to developers. This study proposes a method for generating requirement 

traceability links in business applications. The key feature of the proposed method is that the traceability 

link from the requirements element, which is the basis of the corresponding element to the analysis 

element, is automatically established at the same time the elements of the analysis model are identified. 

This can be a way to reduce developer effort while increasing the efficiency of the traceability model. A 

case study on a Course Registration System demonstrates the feasibility of applying the proposed 

requirements traceability management method to actual software development. 
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Ⅰ. Introduction 

 
Difficulties in software development are derived from invisibility, one of the essences of the software 

itself [1]. This characteristic of a software product that cannot be seen with the naked eye or touched wit

h the hand causes uncertainty for both developers and users. This uncertainty leads to frequent changes i

n requirements. According to the survey results in [2], it is evident that around 40 to 90% of the total sys

tem development cost is allocated to system changes due to shifts in requirements. Apart from requireme

nts changes stemming from the invisibility of software, change requests in requirements due to shifts in t

he business landscape are also frequent, particularly within business application system domains. The du

ration needed to incorporate changes prompted by these diverse factors into the system is a noteworthy a

ttribute of evaluating the quality of a software system [3]. 

Fig. 1 presents an overview of the process, from initiating a requirement change request to integrating 

it within the system. A user submits a change request (CR) to alter requirements A to A'. The Change Co

ntrol Board (CCB) assesses the submitted CR and determines whether to incorporate it into the system. I

f the CCB accepts the CR, an order to adapt the requirements is issued to respective team members, who

 then embed the new requirements into the system based on their designated roles. During this process, t

he development team encounters the following issues: 

 

Issue 1. Analysis of the change impact and determining whether or not to reflect the request for chang

e in requirements: Is it feasible to implement the submitted request for changes in requirements within

 the current system? 

Issue 2. Tracing the requirement change: Which elements require modification to align with the newl

y proposed requirements as they are implemented into the system? 
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Figure 1. Problematic software change request management process 

 

Issue 3. Sustaining consistency across the changed artifacts: Does consistency persist among altered s

oftware artifacts following the assimilation of new requirements into the system? 

The pivotal solution for addressing these challenging issues is establishing a well-defined requirement

s traceability (TR) model. Requirements traceability denotes the inherent capability of a methodology en

abling changes in any software development artifact, including requirements and specification implemen

tation, to be systematically tracked within the relevant sections of other artifacts [4]. The core of require

ments change management lies in assessing the cascading impact on the components that constitute the r

emainder of the system upon modifying a particular requirement. This necessitates clearly and distinctly 

identifying the TR link between each element, from detailed specifications to implementation code. Rec

ently, various techniques in the AI field have been applied to the problem of automatic configuration of 

TR links. Still, there are hidden problems behind improving the recall value suggested by such technique

s. As long as the recall does not reach the value 1.0, meaning complete coverage in the TR link setup, th

ere is a possibility of losing the link from the requirements artifact to the design artifact, corresponding t

o the starting point of the TR link connection. In the requirements traceability setup problem, the positio

n of the missing TR links is important in addition to the numerical recall value.   

This study proposes a method to (1) create a requirements traceability model while minimizing the los

s of the top-level trace links from requirements artifacts to design artifacts, (2) extend the requirements tr

aceability model to design phase artifacts, and (3) measure the impact degree of each requirement chang

e. This study uses the automatic analysis pattern generation technique using the CRA (Class Responsibil

ity Assignment) pattern language proposed in previous research [5]. Applying the CRA pattern language

 from requirements to create an analysis model automatically establishes a trace link between the analysi

s entity and the requirement entity that serves as its rationale. As a result, the TR link for all entities in th

e analysis model created by applying the CRA pattern is automatically set. What differentiates the propo

sed approach is that it synchronizes the timing of creating the artifact and establishing the TR link with t

he artifact. It means there is no orphan artifact node in the analysis model, and the top-ranked links of a r

equirement traceability model are secured. According to the application of the CRA pattern, the TR link 

automatic setup process is demonstrated through the Course Registration System example. 

The rest of the paper is organized as follows: Section 2 presents related works on the software require

ments traceability management approaches. Section 3 gives an overview of the presented requirements tr

aceability management process. Section 4 introduces each traceability node and links in the proposed tra

ceability model, and each element is demonstrated with a case study using the Course Registration Syste

m. Section 5 discusses the conclusion of this study with future work plan. 
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Ⅱ. Related Work 
 

Current approaches to facilitating software requirements traceability management can be grouped into

 three categories: manual-based traceability management, semi-automated traceability management, and 

fully automatic traceability management. First, the manual-based requirements traceability management 

method finds support in numerous commercial traceability tools, including RETH [6], DOORS [7], RT

M [8], RequisitePro [9], and others. Despite developers utilizing a specific tool, it does not alleviate the 

necessity to independently decipher the TR links between artifacts and establish them between different t

ypes of artifacts from different development phases through the tool. The manual set-up of TR links can 

lead to potential errors like omitting requirements TR links or establishing incorrect links. Moreover, sett

ing up TR links is intricate and still demands a substantial investment of time and resources. Consequent

ly, due to these inherent drawbacks, even with a requirements management tool, its practical utilization t

ends to be limited in actual software development endeavors. 

Second, the semi-automated approach to requirements traceability management involves traceability 

management tools automatically aiding the creation of certain TR links. This technique relies on essentia

l data derived from previous developers' TR link setup history [10][11][12] for establishing the fundame

ntal TR links. The initial task of identifying these TR links still rests with the developer. Consequently, i

ssues akin to inherited errors from initial links by developers, intricacies in establishing TR links, and th

e considerable time and cost with manual link setup, which were predicaments of manual traceability ma

nagement, remain unresolved.  

The third approach is to support a tool that autonomously facilitates establishing requirements TR link

s. Several traditional techniques encompassing information retrieval (IR) [13][14][15], traceability establ

ishment rules [16][17], mathematical axioms [18], specialized types of integrators [19], and others are e

mployed to create these TR links. Recently, Recently, machine learning-based approaches have been intr

oduced as a solution for requirements traceability recovery [20][21][22]. [20] proposed a method of lear

ning a machine learning classifier that can discover a new TR link using a priori knowledge and update t

he existing traceability. As a result of performance comparison with seven popular technologies among e

xisting IR technologies, it showed an advantage in terms of F-score. On the other hand, [21] proposed a f

ramework called TVace BERT (T-BERT), a modification of BERT, for generating TR links between so

urce code and artifacts written in natural language. It showed better results than the VSM model, which i

s analyzed as the performance improvement obtained using the pre-trained language model and transfer l

earning. [22] judged that there was a limit to traceability recovery only by applying learning techniques, 

and proposed a framework called SPLINT that integrates hybrid textual similarity measures and semi-su

pervised learning strategies. The integrated application of the two techniques proved that the imbalance 

and sparsity problems in the data related to requirement traceability were solved to some extent. 

Except for the manual TR link setup approach, the semi-automatic and fully automatic approaches to r

equirements traceability management predominantly rely on historical a priori data when establishing tra

ceability relationships. The utilization of past data aids in establishing TR links among present software 

development products. However, given that past decisions cannot be unequivocally projected onto the fu

ture, ensuring 100% adherence, the comprehensive assurance of requirements traceability remains funda

mentally uncertain. The amount of benefit stemming from upholding accurate requirements for traceabili

ty relationships hinges on the extent of completeness in traceability establishment. As a result, the potent

ial omission of traceability relationships, inherently implied within existing research, diminishes the ben

efit the demanded developers' endeavors toward requirements tracing management. 

 

 

Ⅲ. Automatic Generation of Requirement Traceability Link Based on Class 

Responsibility Assignment Pattern Language Application 
 

Existing automatic requirements traceability approaches encompass diverse models, data, and techniq

ues, leading to variations in the resulting precision and recall values of the TR links set through their app

lication. Nonetheless, a shared and fundamental Issue emerges from the discrepancy between establishin

g the TR links and the software artifact creation time. Following the creation of artifacts, specifically aft

er registering them within the common storage, a TR link connecting these artifacts comes into setup. W

hile the accuracy of the TR link can be enhanced by utilizing knowledge inherent in historical data via v
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arious techniques or models, achieving a recall of 1—indicating perfect completeness in the TR link setu

p—remains elusive.  

In the configuration of TR links, the recall value carries relatively more significance than the precision

 value. If an incorrect TR link is established, particularly a trace link connecting requirements and analys

is artifacts at an early stage, losing this link can trigger a ripple effect, leading to the forfeiture of trace li

nks to numerous artifacts that necessitate ongoing traceability in subsequent development phases. For ins

tance, even with a recall of 0.999, the misplacement of a trace link accounting for 0.001, especially if it p

ertains to a link between early-stage products proximate to the root of the traceability tree, can engender 

the loss of traceability across all products after the misplaced trace link. 

To resolve this problem, this study establishes several strategies for designing the requirements tracea

bility management method. 

 

1. Storing software artifacts within a shared repository mandates the establishment of a trace-from lin

k (which explains why the artifact was identified based on another artifact). Artifacts generated by dev

elopers locally may not necessitate traceability setup; however, when considering the addition of an ar

tifact—tested within a developer's local area—to the common repository, supplementary information i

s required to delineate which artifact from the prior stage served as the foundation for the new artifact.

 Consequently, these requirements prevent the generation of artifacts corresponding to orphan nodes b

y aligning traceability establishment timing with artifact creation. The ultimate aim of this strategy is t

o achieve a recall value of 1.0 for the requirements traceability setup, which means there is no missing

 TR link. 

2. The means to mitigate the effort needed for specifying a trace-from link is necessary. The first strat

egy above might encounter opposition from developers, as it necessitates trace-from link setup for all 

artifacts—an obligation that was absent before. Consequently, an avenue to minimize the developer's 

exertion required for TR link setup should be explored. 

 

Implementing the first strategy above within an actual development project is not quite difficult. A co

mparatively simple solution could entail guiding the user to include the name of the artifact, which is the

 destination of the trace-from relationship alongside the file when committing to git involving a particula

r file. Besides the simple solution, developing a dedicated tool should be supported to visualize the trace

ability tree or conduct change impact analyses based on the trace-from relationship—this paper's focal p

oint of discussion centers around the execution of the second strategy. In our previous study [5], the anal

ysis model is automatically generated from the requirements model using the Class Responsibility Assig

nment (CRA) pattern language. The method presented in this paper simultaneously establishes TR links 

from requirements to analysis when the analysis model is generated. Given that the CRA pattern languag

e's application domain is business applications, the scope of application for the automatic generation mo

del of requirement TR links proposed in this paper is likewise confined to systems situated within the rea

lm of business applications. 

Within the spectrum of TR link configurations among artifacts spanning diverse phases, the significan

ce of automating the establishment of TR links during the analysis phases within the requirement phase i

s notable. This is particularly attributed to the fact that tracing in the requirements-analysis stage entails 

a considerably heuristic task, distinct from the subsequent traceability that extends to design-implementa

tion-testing stages, necessitating a substantial commitment from developers. It means the potential benef

its of automated TR link setup are relatively more substantial. From other aspects, the TR links between 

the requirement and analysis phases encompass links between nodes nearest to the root node within the t

raceability tree structure. Given that the scope of traceability relationships lost when a single link is abse

nt is the widest, the importance of the automatic establishment of precise links is comparatively great.  

 

3.1. Automatic Generation Process of Requirement Traceability Link Based on CRA Pattern Application 

Fig.2 shows a process of automatically generating analysis elements through pattern instantiation usin

g the CRA pattern language and automatically generating trace-from link between the automatically gen

erated analysis elements and the requirement elements corresponding to the rationale describing. 

 (1) The system analyst refers to the use case specification and answers each item of the pre-designed q

uestion set suggested by [5]. 
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 (2) The atomic CRUD (Create/Read/Update/Delete) operation type is defined, encompassing the speci

fic sequence for each operation type and the parameter values linked to the sequence for each chose

n CRUD operation. During this phase, aside from the response values for each query provided by th

e system analyst, the pre-identified key abstraction model, including important entity classes and rel

ationships among them, outlining the interconnection between them, become pivotal factors in deter

mining a distinct CRA pattern. A selection of two to six CRA patterns is made to construct a sequen

ce diagram that embodies a single business service flow. Adhering to the pre-arranged sequence of t

he chosen CRA pattern, it is interwoven into the skeletal structure of a sequence diagram that corres

ponds to a single service flow. 

(3) The answer value for each question outlined by the system analyst in Step 1 also serves as a criterio

n for selecting the CRA pattern; a portion of these answers corresponds to a parameter value encom

passed within the chosen CRA pattern. Answer values are allocated to each parameter featured with

in the object name or message name at the top of the sequence. This results from the interweaving o

f CRA patterns in step 2, the instantiation of the flow sequence diagram. The newly generated class

es and operations during the instantiation of a sequence diagram are automatically added to the anal

ysis model.  

(4) Whenever elements are added to the analysis model due to CRA pattern instantiation, the relationsh

ip (trace-from link) between the added analysis element itself and the requirements element that is t

he basis for its identification is automatically added to the requirements traceability model. Traceabi

lity-related information can be manually added when creating a key abstraction model used as an in

put for pattern instantiation. The TR links for the analysis elements identified after pattern instantiat

ion can also be added. 

To run the entire process described in Fig. 2, the support of an automated tool is required. The Analysis 

Model Skeleton Generator mentioned in Fig.2 is that. With the tool, developers select a proper word to a

nswer a question from use case specifications written in Microsoft Word. Then, a proper set of the CRA 

pattern will be automatically selected, and each word developers select will substitute each pattern varia

ble. Consequently, a UML authoring tool will automatically create the sequence diagram. At the same ti

me that the Analysis Model Skeleton Generator automatically creates an analysis model, it can create a 

TR link from the element that became the rationale for the analysis model creation in the requirements s

pecification to the created analysis element. As a result, it means that the time of the creation of the anal

ysis model and the time of the TR link between the requirements-analysis stage corresponding to the poi

nt where most TR links are missing can be matched. To this end, a well-defined requirements traceabilit

y model must first be defined. Next, we will examine the main structure of the requirements traceability 

model proposed in this study. 

 

 
Figure 2. Process overview of automatic generation of requirement traceability link based on class 

responsibility assignment pattern application 
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Figure 3. Requirements traceability model: graphical syntax for trace nodes and trace links 

 

3.2. Traceability Model from Requirements to Design Elements 

The graphical syntax of the model expressing requirements traceability is shown in Fig. As shown in 

3(a), each traceability node displays the name and type of artifacts the node represents as TR_Node.Nam

e@TR_Node.Type in a rounded rectangle. An arrow with a direction from the source node to the destina

tion node in Fig.3(a) indicates the trace-to link. A horizontal TR link is a trace-to link between artifacts o

f the same development phase marked with a solid line. On the other hand, the trace-to link between artif

acts created in different development phases is a horizontal TR link marked with a dotted line. 

Fig. 3(b) describes the types of traceability nodes constituting the requirement traceability model prop

osed in this study and the TR link connection relationship between the types. Artifacts in the stages of i

mplementation and testing that need to be traced from design artifacts can be automatically secured if a 

design tool that supports forward engineering is used. Therefore, this study defines the trace-to link betw

een artifact nodes from the requirement phase to the design phase. 

 

 

Ⅳ. Case Study with Course Registration System 
 

In this section, the feasibility of the proposed model is evaluated by showing stepwise application of e

ach traceability node and the TR link settings between nodes in Fig.3 together with the case registration 

system example. 

 

4.1. ACTR (Actor: AACTR/PACTR) and UC (Use Case) Node  

When a use case model is selected as a requirements model, the components of the use case model are

 use cases and actors. Actors are divided into active actors, who send messages that drive use cases to th

e system, and passive actors, driven by receiving specific messages from the system while performing us

e cases. In the use-case diagram, the actor who shoots the arrow of the communication-association relati

onship as a use-case is the active actor, and the actor who receives the arrow is the passive actor. Fig. 4

(a) and 4(b) show the traceability model of the requirements phase corresponding to some fragments of t

he use case diagram related to the register for courses use case. The actors and use cases of the use case 

model correspond 1:1 to the traceability nodes UC, AACTR, and PAACTR nodes, respectively. The poi
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nt to note here is that the direction of the relationship on the use case diagram and the direction of the tra

ce-to link in the traceability model do not match each other. The relationship on the use case diagram ind

icates the direction of communication invocation. Still, the direction of the link in the traceability model 

indicates the direction of trace-to. In other words, because the use case is influenced by who (what) the p

assive actor is, the trace-to link directs the PACTR node, the node corresponding to the passive actor, to 

the UC node. 

 

4.2. FE (Flow of Event) Node 

The FE (Flow of Event) node is a traceability node belonging to the requirements phase and correspon

ds to each flow on the use case specification. Accordingly, a trace-to link is established from the UC nod

e mapped to the use case in which the corresponding FE is identified. The name of the node is the same 

as the name of the corresponding event flow. If there is only one main flow without other sub flows in th

e basic flow in the use case specification, it is named “use case name.BasicFlow”. Fig. 4(c) and 4(d) sho

w the relationship in which the FE node corresponding to the flow called Create a Schedule is affected b

y the UC node called Register for Courses, which was already identified in Fig.4 (b) In the case of the ex

ample use case, the basic flow contains two or more subflows. In this case, the name of the correspondin

g flow is used as the name of the FE node. 

 

4.3. ACLS (Analysis Class) Node 

In the case of the ACLS node representing the analysis class, the stereotype of each class is additionally 

displayed as a tagged value on the vertical trace-to link, as depicted in Fig.5 (a). Classes identified in the 

Analysis Phase can be identified by dividing into three stereotypes: <<Control>>, <<Boundary>>, and <

<Entity>> according to the guidelines of Unified Process [23]. <<Boundary>> In the analysis class, whi

ch is a stereotype, the Form class, which mainly serves as a graphical user interface, and the target syste

m to be interfaced in the future Interface class that implements the interface protocol with the passive act

or, which becomes the system, belongs to two classes. Therefore, the requirements element that is the rat

ionale for identifying the Form class and the Interface class is different. Since the guideline is to identify

 one Form class per flow of event on the use case specification, a vertical TR link is established from the

 FE (flow of event) node of the requirements phase accordingly. On the other hand, the Interface class es

tablishes a vertical TR link from the PACTR (passive actor) node of the requirements phase. 

 

 
Figure 4. An example of ACTR and UC node identification for the Course Registration System 
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In Unified Process, the <<Control>> class guides to assign one per each use case. Therefore, a vertic

al trace-to link from the UC node, which is a node of the requirements phase, to the ACLS node corresp

onding to the <<Control>> class is established. Since the <<Entity>> class is a class that contains infor

mation to be managed by the system, the reason for its identification must be found among the nouns des

cribed in the use case specification. Although it is not a special element of the requirements model, word

s included in the use case specification that are the basis for extracting the analysis model's classes, attrib

utes, and operations elements are identified as Requirement Trace Item (RTI) nodes. The vertical trace-t

o link from the RTI node to ACLS (corresponding to the Analysis <<Entity>> class) is set. 

Fig. 5(b) is the specification part of the Create a Schedule flow of the Register for Courses use case. I

n applying the CRA pattern among the use case specifications written in MS Word, if the system analyst

 designates a word as an answer to a question, a kind of markup is set before and after the designated wo

rd. This markup sets hyperlinks between the requirements and analysis elements derived from it. A tool t

hat supports automatic generation of a traceability model currently under development stores such hyper

link information through integration with MS Word. In the previous examples of traceability node identi

fication, the role of the markup is the same as that. Fig. 5(c) diagrams the vertical trace-to link between t

he analysis class (denoted by ACLS node) identified from the use case specification and the requirement

s element node, which is the source of extraction of each analysis class on the specification. It can be co

nfirmed that the trace-to link between each node is connected by stereotype in the examples in Fig. 5(c) 

according to the designed traceability model in Fig. 5 (a). Fig. 5 (c) shows only the TR link between the 

requirements node and the analysis node derived from it. The vertical TR link between the artifact nodes

 of the two phases and the horizontal TR link between ACLS, the output of the same analysis phase, is o

mitted to lessen the complexity in the figure. The horizontal TR links between ACLS are established sim

ultaneously when the relationship among analysis classes is generated, the same as the vertical TR links. 

 

 

 
 

Figure 5. An example of ACLS node identification for the Course Registration System 
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Figure 6. An example of ATTR node identification for the Course Registration System 

 

4.4. ATTR(Analysis Attribute) Node 

AATR node is an abbreviation of the Analysis Attribute node and is a traceability node that indicates 

attributes of the analysis class. As depicted in Fig. 6(a), since it is mainly extracted from words correspo

nding to nouns among use case specifications, a vertical trace-to link is set from RTI (Requirement Trac

eability Item) among node types of the requirements phase. Among the node types of the same analysis 

phase, a horizontal trace-to link must be maintained from the ACLS node, which is a node type that indi

cates an analysis class, including AATR. According to the trace-to link setting rule between these tracea

bility types, an example of ATTR nodes traced in the Add a Student flow of the Maintain Student Infor

mation use case specification in Fig. 6(c) is shown. 

 

4.5. AOPR (Analysis Operation) Node 

An AOPR node is a traceability node that refers to an operation belonging to an analysis class. Therefore,

 it has an ACLS node corresponding to the class to which the corresponding operation belongs and a hori

zontal trace to link. The requirement tracking unit of this tracking model is a function service, and a func

tion service corresponds to one event flow in the use case specification. Since an operation is the behavi

or of the minimum unit system identified in the process of realizing a flow of event, the tracking node in 

the requirements stage to be used as the basis for AOPR identification becomes the FE node. As shown i

n Fig.7, one flow called Register for Courses is realized as a sequence diagram like Fig.7(b) as the result 

of applying the CRA pattern language. Fig.7(c) shows the create@AOPR node, which refers to the opera

tion create ( ), an AOPR-type traceability node, by highlighting only the TR links connected to this node 

and the nodes connected by the TR link. 

create ( ) is an operation belonging to the Schedule class. Therefore, Schedule@ACLS and trace-to li

nk are established. Looking at the sequence of Fig.7(b), it can be seen that the Schedule.creat( ) operatio

n is called on the focus of control of createSchedule( ), an operation of RgstrCrsCntrl, a <<Control>> cl

ass. That means Schedule.creat( ) is called in the implementation part of RgstrCrsCntrl.createSchedule

( ). These operations are called on the service flow called Create a Schedule. Therefore, a trace-to link fr

om Create a Schedule@FE node to create@AOPR node is required. Of course, this trace link is also set 

as createSchedule@AOPR, but Fig.7(c) focuses only on the TR links related to create@AOPR, so it is n

ot displayed. The pieces of the traceability model represented in Fig. 7(c) are identified simultaneously a

s the part marked with a dashed box in the sequence diagram of Fig. 7(b) is identified. 
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Figure 7. An example of AOPR node identification for the Course Registration System 

 

4.6. Extension of the traceability model when transitioning from analysis model to design model 

After the creation of the analysis model based on the requirements is completed, the baseline for the a

nalysis model is set through verification. The baselined analysis model becomes an initial version of the 

design model. Therefore, identification of the design artifact node when baselining the analysis model an

d establishing a TR link from a node belonging to the analysis model to an initial node belonging to the 

design model can be completed relatively simply. Copy all traceability nodes of ACLS, AATR, and AO

PR types corresponding to artifacts created in the analysis phase and change only the type to DCLS, DA

TR, and DOPR. Set up a vertical trace-to link from an ACLS-type node with the same name to a DCLS-t

ype node. The remaining DATR and DOPR types of node identification and trace-to link are performed 

similarly. 

The design model created as a result of the baselining of the analysis model is refined by applying a s

pecific architectural pattern in the design phase or by adding library classes provided by the framework. 

Whenever new elements are added as a result of the refinement of the design model, they must be imme

diately reflected in the traceability model. When a new node or link is created, the rules for setting TR li

nks are the same as those applied to traceability nodes in the analysis phase. The only difference is that t

he prefix of the type name is 'D' instead of 'A.’ 

 

4.7. Visualization of change impact utilizing the requirements traceability model 

The requirements traceability model proposed in this study is designed in a graph structure. Therefore,

 when a TR link is established between the requirements phase, analysis, and design phases when a speci

fic requirement is requested, it is possible to visualize how the change affects the entire software artifact 

immediately. Fig.8 shows an example of visualizing the impact of a change when a change occurs in a p

art of the traceability model and a specific node among them. When evaluating change impact, the requir

ed input is the traceability node and trace distance where the change request occurred. Trace distance is a

 feature that specifies the degree to which the range of change impact is to be set, depending on the natur

e of the change request. Nodes that can be reached from one node through one trace link are nodes withi

n the range of trace distance 1. The number of trace links that must be passed through to reach another n

ode from one node becomes the trace distance value. As described in the previous subsection, the trace li

nk is divided into a horizontal TR link, a TR link between artifact nodes belonging to the same develop

ment phase, and a vertical TR link, a TR link between connected artifact nodes belonging to different de

velopment phases.  

The traceability graph at the left of Fig. 8 shows a problem in identifying the active actor, Student (Stu

dent@AACTR). However, this is a rare case, and it is a case in which all requirements related to the acto
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r, Student, need to be re-examined. This situation can usually arise early in the requirements engineering

 phase. Therefore, it is necessary to identify related nodes targeting only the traceability nodes belonging

 to the requirements phase. At this time, when trying to obtain a graph showing the change impact, the v

ertical trace distance can be set to 0 to limit the range only to related nodes created in the development p

hase where the node where the change occurred was created. In the case of horizontal trace distance, dep

ending on the severity of the node where the change occurred, the developer assigns one if it is possible t

o determine that only the very close nodes are affected and assigns a larger number as the wavelength of 

the impact is wider. 

Another example of change impact analysis using traceability graph is illustrated at the right of Fig.8. 

The content of the Create Schedule flow, one of the flows of events described on the Register for Course

s use case specification, corresponds to one example of traceability graphs that can be created when a ch

ange request occurs in a flow of event. Suppose the sequence of a service flow or the operation called on

 the sequence needs to be changed. In that case, the ripple effect is cascaded along the vertical TR link th

at goes through the requirements → analysis → design phases. Therefore, as shown in Fig.8, the change 

impact can be visually confirmed by arbitrarily setting the horizontal trace distance to 0 and the vertical t

race distance.  

In addition to visualizing the range of impact of a change in a specific node, the number of nodes affe

cted by a change in a specific node and the number of total artifact nodes in one system can be counted. 

Consequently, the impact of the change request can be quantified as a percentage. By quantifying the exi

sting qualitative change impact analysis, it is possible to present an objective rationale for determining th

e acceptance of change requests raised through various sources. 

 

 
 

Figure 8. Change impact analysis using traceability graphs 

 

 

Ⅴ. Conclusions and Future Work 
 

Requirement change requests during software system development and maintenance are not problems 

developers can suppress. To conduct systematic requirements change management to respond to unavoid

able efficiently and, in some cases, frequently occurring requirement change requests, it is necessary to s

olve three issues as described in the introduction section above (1) analysis of the change impact and det

ermining whether or not to reflect the request for change in requirements, (2) tracing the requirement cha

nge, and (3) sustaining consistency across the changed artifacts. In this study, to resolve these issues, am

ong the artifacts generated in each stage from requirements to design, the artifacts to be maintained for tr

aceability were identified, and the trace-to link between each artifact was designed for the requirements t

raceability model. From the requirement phase to the design phase, the creation timing of each TR link a

nd destination node, the newly identified artifact itself, is synchronized by applying CRA pattern langua

ge. The feasibility of the proposed requirement traceability model was shown through an application cas

e of the Course Registration System belonging to the business application domain category. Through the
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 case study, each artifact node and the TR link needed for each node were explained with tangible examp

le fragments. Change impact analysis visualized with a traceability graph in response to a specific chang

e request was also demonstrated with the example case. 

The proposed requirements traceability management process automates the traceability node and link 

setup in conjunction with the artifact generation rule of the CRA pattern language proposed in previous s

tudies [5] to minimize the effort of TR link setup. CRA pattern language sets only the business applicati

on domain as the target scope, and all elements, from requirements to design, cannot be automatically cr

eated. However, an encouraging fact regarding the effect of reducing effort by applying the CRA pattern

 language is that, according to the evaluation results in [5], 67% of the total number of operations includ

ed in the final analysis model was automatically generated. This result means that 67% of the TR links b

etween artifacts in the requirement and artifacts in the design phases, which can be critical but most freq

uently lost, can be automatically configured. This experimental result is encouraging because it can redu

ce a significant part of the developer's effort, and the accuracy of the established TR link is guaranteed. 

There is a limit to quantitatively evaluating whether the requirements TR link setting the recall value, 

as for now. It is necessary to develop a tool that automatically updates the analysis/design elements adde

d by the developer using the UML authoring tool to the traceability model after generating the traceabilit

y model in conjunction with the CRA pattern. Currently, such a tool is being developed, and as soon as t

he tool development is completed, a quantitative evaluation to prove the effectiveness of the proposed tr

aceability model is planned. 
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