DOI QR코드

DOI QR Code

A modified couple-stress magneto-thermoelastic solid with microtemperatures and gravity field

  • Samia M. Said (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Elsayed M. Abd-Elaziz (Ministry of Higher Education, Zagazig Higher Institute of Engineering and Technology) ;
  • Mohamed I.A. Othman (Department of Mathematics, Faculty of Science, Zagazig University)
  • Received : 2022.10.25
  • Accepted : 2023.07.18
  • Published : 2023.09.10

Abstract

The present study deals with wave propagation in a modified couple-stress generalized thermoelastic solid under the effect of gravity and magnetic field. The problem is solved by a refined microtemperatures multi-phase-lags thermoelastic theory. The Fourier series and Laplace transforms will be used to obtain the general solution for any set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the gravity field, the magnetic field, and different theories of thermoelasticity in the presence of the hall current effect on all the physical quantities. Some particular cases of special interest have been deduced from the present investigation.

Keywords

References

  1. Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413-430. https://doi.org/10.3390/sym11030413. 
  2. Ailawalia, P., Sachdeva, S.K. and Pathania, D.S. (2017), "Plane strain problem in a rotating microstretch solid with microtemperatures", Theor. Appl. Mech., 44(1), 51-82. https://doi.org/10.2298/TAM170102003A. 
  3. Alharbi, A.M., Said, S.M. and Othman, M.I.A. (2021), "Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model", Steel Compos. Struct., 40(6), 881-891. https://doi.org/10.12989/scs.2021.40.6.881. 
  4. Alharbi, A.M., Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2022), "Infuence of initial stress and variable thermal conductivity on a fiber-reinforced magneto-thermoelastic solid with micro-temperatures by multi-phase-lags model", Int. J. Struct. Stab. Dyn., 22(1), 2250007. https://doi.org/10.1142/S0219455422500079. 
  5. Casas, P.S. and Quintanilla, R. (2005), "Exponential stability in thermoelasticity with micro- temperatures", Int. J. Eng. Sci., 43(1-2), 33-47. https://doi.org/10.1016/j.ijengsci.2004.09.004. 
  6. Chen, W. and Wang, Y. (2016), "A model of composite laminated Reddy plate of the global-local theory based on new modified couple-stress theory", Mech. Adv. Mater. Struct., 23(6), 636-651. https://doi.org/10.1080/15376494.2015.1028691. 
  7. Chirita, S., Ciarletta, M. and D'Apice, C. (2013), "On the theory of thermoelasticity with micro-temperatures", J. Math. Anal. Appl., 397, 349-361. https://doi.org/10.1016/j.jmaa.2012.07.061. 
  8. Ezzat, M.A. and El Karamany, A.S. (2011), "Theory of fractional order in electro-thermoelasticity", Eur. J. Mech.-A/Solid., 30(4), 491-500. https://doi.org/10.1016/j.euromechsol.2011.02.004. 
  9. Ezzat, M.A. and Othman, M.I.A. (2000), "Electromagneto-thermo- elastic plane waves with two relaxation times in a medium of perfect conductivity", Int. J. Eng. Sci., 38(1), 107-120. https://doi.org/10.1016/S0020-7225(99)00013-0. 
  10. Ezzat, M.A. and Othman, M.I.A. (2002), "State-space approach to generalized magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity", J. Therm. Stress., 25(5), 409-429. https://doi.org/10.1080/01495730252890168. 
  11. Iesan, D. and Quintanilla, R. (2000), "On the theory of thermoelasticity with micro-temperatures", J Therm. Stress., 23(3), 199-215. https://doi.org/10.1080/014957300280407. 
  12. Iesan, D. and Quintanilla, R. (2008), "On thermoelastic bodies with inner structure and micro-temperatures", J. Math. Anal. Appl., 354, 12-23. https://doi.org/10.1016/j.jmaa.2008.12.017. 
  13. Jahangir, A., Dar, A. and Othman, M.I.A. (2021), "Influence of laser pulse on plane waves propagating in a thermoelastic medium with micro-temperature under the DPL model", J. Eng. Therm. Sci., 1(2), 54-64. https://doi.org/10.21595/jets.2021.22166. 
  14. Kumar, R. and Devi, S. (2015), "Interaction due to Hall current and rotation in a modified couple stress elastic half-space due to ramp-type loading", Comput. Meth. Sci. Tech., 21(4), 229-240. https://doi.org/10.12921/cmst.2015.21.04.007. 
  15. Kumar, R. and Kaur, M. (2014), "Reflection and refraction of plane waves at the interface of an elastic solid and micro-stretch thermoelastic solid with microtemperatures", Arch. Appl. Mech., 84, 571-590. https://doi.org/10.1007/S00419-014-0818-1. 
  16. Kumar, R. and Rani, L. (2004), "Deformation due to mechanical and thermal sources in generalised orthorhombic thermoelastic material", Sadhana, 29, 429-447. https://doi.org/10.1007/BF02703254. 
  17. Nayfeh, A. and Nemat-Nasser, S. (1972), "Transient thermoelastic waves in half-space with thermal relaxation", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 23, 50-68. https://doi.org/10.1007/BF01593202. 
  18. Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Plane waves in a magneto-thermoelastic solids with voids and microtemperatures due to hall current and rotation", Res. Phys., 7, 4253-4263. https://doi.org/10.1016/j.rinp.2017.10.053. 
  19. Othman, M.I.A. and Abd-Elaziz, E.M. (2019), "Effect of initial stress and Hall current on a magneto-thermoelastic porous medium with microtemperatures", Ind. J. Phys., 93(4), 475-485. https://doi.org/10.1007/s12648-018-1313-2. 
  20. Othman, M.I.A. and Said, S.M. (2018), "Effect of diffusion and internal heat source on a two-temperature thermoelastic medium with three-phase-lag model", Arch. Thermody., 39(2), 15-39. https://doi.org/10.1515/aoter-2018-0010. 
  21. Othman, M.I.A. and Song, Y.Q. (2009), "The effect of rotation on 2-D thermal shock problems for a generalized magneto-thermoelasticity half-space under three theories", Multi. Model. Mater. Struct., 5(1), 43-58. https://doi.org/10.1108/15736105200900003. 
  22. Puri, P. (1972), "Plane waves in thermoelasticity and magnetothermoelasticity", Int. J. Eng. Sci., 10(5), 467-476. https://doi.org/10.1016/0020-7225(72)90052-3. 
  23. Quintanilla, R. (2011), "On growth and continuous dependence in thermoelasticity with microtemperatures", J. Therm. Stress., 34, 911-922. https://doi.org/10.1080/01495739.2011.586278. 
  24. Rani, L. (2022), "Disturbance in a generalized thermoviscoelastic half-space with voids with microtemperature without energy dissipation due to thermal source", Int. J. Appl. Eng. Res., 17(4), 370-395. 
  25. Rezazadeh, G., Vahdat, A.S., Tayefeh-rezaei, S. and Cetinkaya, C. (2012), "Thermoelastic damping in a micro-beam resonator using modified couple stress theory", Acta Mechanica, 223(6), 1137-1152. https://doi.org/10.1007/s00707-012-0622-3. 
  26. Riha, P. (1976), "On the microcontinuum model of heat conduction in materials with inner structure", Int. J. Eng. Sci., 14(6), 529-35. https://doi.org/10.1016/0020-7225(76)90017-3. 
  27. Said, S.M. (2016), "Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model", J. Comput. Appl. Math., 291, 142-157. http://doi.org/10.1016/j.cam.2014.12.016. 
  28. Said, S.M. (2022), "A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field", Geomech. Eng., 31(2), 159-166. https://doi.org/10.12989/gae.2022.31.2.159. 
  29. Said, S.M. and Othman, M.I.A. (2020), "The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced", Struct. Eng. Mech., 74(3), 425-434. https://doi.org/10.12989/sem.2020.74.3.425. 
  30. Scalia, A. and Svanadze, M. (2006), "On the representation of solutions of the theory of thermoelasticity with microtemperatures", J. Therm. Stress., 29, 849-863. https://doi.org/10.1080/01495730600705448. 
  31. Scalia, A., Svanadze, M. and Tracina, R. (2010), "Basic theorems in the equilibrium theory of thermoelasticity with microtemperatures", J. Therm. Stress., 33(8), 721-753. https://doi.org/10.1080/01495739.2010.482348. 
  32. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded micro- beams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002. 
  33. Singh, B., Kumari, S. and Singh, J. (2014), "Propagation of the Rayleigh save in an initially stressed transversely isotropic dual-phase-lag magnetothermoelastic half-space", J. Eng. Phys. Thermophys., 87, 1539-1547. https://doi.org/10.1007/s10891-014-1160-8. 
  34. Sobhy, M. and Zenkour, A.M. (2020), "Modified three-phase-lag Green-Naghdi models for thermomechanical waves in an axisymmetric annular disk", J. Therm. Stress., 43(6), 1017-1029. https://doi.org/10.1080/01495739.2020.1766390. 
  35. Steeb, H., Singh, J. and Tomar, S.K (2013) "Time harmonic waves in thermoelastic material with microtemperatures", Mech. Res. Commun., 48, 8-18. https://doi.org/10.1016/j.mechrescom.2012.11.006. 
  36. Tzou, D.Y. (1995), "A unified filed approach for heat conduction from macro to macro scales", ASME J. Heat Transf., 117, 8-16. https://doi.org/10.1115/1.2822329. 
  37. Wang, X. and Dong, K. (2006), "Magnetothermodynamic stress and perturbation of magnetic field vector in a non-homogeneous thermoelastic cylinder", Eur. J. Mech.-A/Solid., 25(1), 98-109. https://doi.org/10.1016/j.euromechsol.2005.07.003. 
  38. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X. 
  39. Zenkour, A.M. (2018), "Refined two-temperature multi-phase-lags theory for thermo-mechanical response of microbeams using the modified couple stress analysis", Acta Mechanica, 229(9), 3671-3692. https://doi.org/10.1007/s00707-018-2172-9. 
  40. Zenkour, A.M. (2019), "Refined multi-phase-lags theory for photo- thermal waves of a gravitated semiconducting half-space", Compos. Struct., 212, 346-364. https://doi.org/10.1016/j.compstruct.2019.01.015. 
  41. Zenkour, A.M. (2020a),"Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solid., 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213. 
  42. Zenkour, A.M. (2020b), "Exact coupled solution for photothermal semiconducting beams using a refined multi-phase-lag theory", Opt. Laser Technol., 128, 106233. https://doi.org/10.1016/j.optlastec.2020.106233. 
  43. Zenkour, A.M. (2020c), "Thermal-shock problem for a hollow cylinder via a multi-dual-phase-lag theory", J. Therm. Stress., 43(6), 687-706. https://doi.org/10.1080/01495739.2020.1736966. 
  44. Zenkour, A.M. (2020d), "Thermoelastic diffusion problem for a half-space due to a refined dual-phase-lag Green-Naghdi model", J. Ocean Eng. Sci., 5, 214-222. https://doi.org/10.1016/j.joes.2019.12.001. 
  45. Zenkour, A.M. and Kutbi, M.A. (2019), "Multi thermal relaxations for thermodiffusion problem in a thermoelastic half-space", Int. J. Heat Mass Transf., 143, 118568. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118568.