DOI QR코드

DOI QR Code

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim (Rotorcraft Structural Design Team, Korea Aerospace Industries) ;
  • Chang-Hoon Sim (Department of Aerospace Engineering, Chungnam National University) ;
  • Jae-Sang Park (Department of Aerospace Engineering, Chungnam National University) ;
  • Joon-Tae Yoo (Launcher Structures and Materials Team, Korea Aerospace Research Institute) ;
  • Young-Ha Yoon (Launcher Structures and Materials Team, Korea Aerospace Research Institute) ;
  • Keejoo Lee (Small Launch Vehicle Research Division, Korea Aerospace Research Institute)
  • Received : 2023.04.03
  • Accepted : 2023.07.23
  • Published : 2023.09.10

Abstract

This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

Keywords

Acknowledgement

This work was supported by research on the Korea Space Launch Vehicle (KSLV-II) funded by the Ministry of Science and ICT (MSIT, Korea). The work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022M1A3B8076744).

References

  1. Abramovich, H., Govich, D. and Grunwald, A. (2015), "Buckling prediction of panels using the vibration correlation technique", Progress in Aerospace Sciences, 78, 62-73. https://doi.org/10.1016/j.paerosci.2015.05.010.
  2. Arbelo, M.A., De Almeida, S.F., Donadon, M.V., Rett, S.R., Degenhardt, R., Castro, S.G., Kalnin, K. and Ozolins, O. (2014), "Vibration correlation technique for the estimation of real boundary conditions and buckling load of unstiffened plates and cylindrical shells", Thin Wall. Struct., 79, 119-128. https://doi.org/10.1016/j.tws.2014.02.006.
  3. Baciu, T., Degenhardt, R., Franzoni, F., Gliszczynski, A., Arbelo, M.A., Castro, S.G. and Kalnins, K. (2023), "Sensitivity analysis for buckling characterization using the vibration correlation technique", Thin Wall. Struct., 183, 110329. https://doi.org/10.1016/j.tws.2022.110329.
  4. Degenhardt, R. (2014a), "New robust design guideline for imperfection sensitive composite launcher structures-The DESICOS project", Proceedings of the 13th European Conference on Spacecraft Structures, Materials and Environment Testing.
  5. Degenhardt, R., Kling, A., Zimmermann, R., Odermann, F. and Araujo, F.C. (2012b), "Chapter dealing with imperfection sensitivity of composite structures prone to buckling", InTechOpen Ltd.: London, United Kingdom.
  6. Deml, M. and Wunderlich, W. (1997), "Direct evaluation of the 'worst' imperfection shape in shell buckling", Comput. Meth. Appl. Mech. Eng., 149, 201-222. https://doi.org/10.1016/S0045-7825(97)00055-8.
  7. Franzoni, F., Degenhardt, R., Albus, J. and Arbelo, M.A. (2019a), "Vibration correlation technique for predicting the buckling load of imperfection-sensitive isotropic cylindrical shells: An analytical and numerical verification", Thin Wall. Struct., 140, 236-247. https://doi.org/10.1016/j.tws.2019.03.041.
  8. Franzoni, F., Odermann, F., Wilckens, D., Skukis, E., Kalnins, K., Arbelo, M.A. and Degenhardt, R. (2019b), "Assessing the axial buckling load of a pressurized orthotropic cylindrical shell through vibration correlation technique", Thin Wall. Struct., 137, 353-366. https://doi.org/10.1016/j.tws.2019.01.009.
  9. Graham, J.B. and Luz, P.L. (1998), "Preliminary in-flight loads analysis of in-line launch vehicles using the VLOADS 1.4 Program", Report No. NASA/TM-1998-208472, National Aeronautics and Space Administration.
  10. Hao, P., Duan, Y., Liu, D., Yang, H., Liu, D. and Wang, B. (2023d), "Image-driven intelligent prediction of buckling behavior for geometrically imperfect cylindrical shells", Am. Inst. Aeronaut. Astronaut. J., 61, 2266-2280. https://doi.org/10.2514/1.J062470.
  11. Hao, P., Wang, B., Li, G., Meng, Z., Tian, K. and Tang, X. (2014b), "Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method", Thin Wall. Struct., 82, 46-54. https://doi.org/10.1016/j.tws.2014.04.004.
  12. Hao, P., Wang, B., Li, G., Meng, Z., Tian, K., Zeng, D. and Tang, X. (2014a), "Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors", Thin Wall. Struct., 82, 321-330. https://doi.org/10.1016/j.tws.2014.05.004.
  13. Hao, P., Wang, Y., Jin, L., Ma, S. and Wang, B. (2023c), "An isogeometric design-analysis-optimization workflow of stiffened thin-walled structures via multilevel NURBS-based free-form deformations (MNFFD)", Comput. Meth. Appl. Mech. Eng., 408, 115936. https://doi.org/10.1016/j.cma.2023.115936.
  14. Hilburger, M.W. (2015a), "Shell buckling knockdown factor project overview and status", Report No. NASA/NF1676L-21449, National Aeronautics and Space Administration.
  15. Hilburger, M.W. (2018d), "On the development of shell buckling knockdown factors for stiffened metallic launch vehicle cylinders", Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
  16. Hilburger, M.W., Waters, W.A.J. and Haynie W.T. (2015b), "Buckling test results from the 8-foot-diameter orthogrid-stiffened cylinder test article TA01", Report No. NF1676L-20067, National Aeronautics and Space Administration.
  17. Hilburger, M.W., Waters, W.A.J., Haynie W.T. and Thornburgh, R.P. (2017c), "Buckling test results from the 8-foot-diameter orthogrid-stiffened cylinder test article TA02", Report No. NASA/TP-2017-219587, L-20801, NF1676L-26704, National Aeronautics and Space Administration. https://doi.org/10.1016/j.tws.2008.01.043.
  18. Huhne, C., Rolfes, R., Breitbach, E. and Tessmer, J. (2008), "Robust design of composite cylindrical shells under axial compression-Simulation and validation", Thin Wall. Struct., 46, 947-962. https://doi.org/10.1016/j.tws.2008.01.043.
  19. Jeon, M.H., Cho, H.J., Sim, C.H., Kim, Y.J., Lee, M.Y. and Kim, I.G. (2023), "Experimental and numerical approach for predicting global buckling load of pressurized unstiffened cylindrical shells using vibration correlation technique", Compos. Struct., 305, 116460. https://doi.org/10.1016/j.compstruct.2022.116460.
  20. Johnson, E.E. and Goldhammer, B.F. (1952), A Determination of the Critical Load of a Column or Stiffened Panel in Compression by the Vibration Method, David W. Taylor Model Basin, Navy Department.
  21. Kalnins, K., Arbelo, M.A., Ozolins, O., Skukis, E., Castro, S.G.P. and Degenhardt, R. (2015), "Experimental nondestructive test for estimation of buckling load on unstiffened cylindrical shells using vibration correlation technique", Shock Vib., 2015, Article ID 729684. https://doi.org/10.1155/2015/729684.
  22. Kim, D.Y., Sim, C.H., Kim, H.I., Park, J.S., Yoo, J.T., Yoon, Y.H. and Lee, K. (2021a), "Derivations of buckling knockdown factors for composite cylinders considering various shell thickness ratios and slenderness ratios", J. Korean Soc. Aeronaut. Space Sci., 49(4), 321-328. https://doi.org/10.5139/JKSAS.2021.49.4.321.
  23. Kim, D.Y., Sim, C.H., Park, J.S., Yoo, J.T., Yoon, Y.H. and Lee, K. (2021b), "Derivation of knockdown factors for composite cylinders with various initial imperfection models", Compos. Res., 34(5), 283-289. https://doi.org/10.7234/composres.2021.34.5.283.
  24. Kim, D.Y., Sim, C.H., Park, J.S., Yoo, J.T., Yoon, Y.H. and Lee, K. (2021c), "Buckling knockdown factors of composite cylinder under both compression and internal pressure", Aerosp., 8(11), 346. https://doi.org/10.3390/aerospace8110346.
  25. Kim, H.I., Sim, C.H., Park, J.S., Kim, D.Y., Yoo, J.T., Yoon, Y.H. and Lee, K. (2020a), "Postbuckling analyses and derivations of shell knockdown factors for isogrid-stiffened cylinders under compressive force and internal pressure", J. Korean Soc. Aeronaut. Space Sci., 48(9), 653-661. https://doi.org/10.5139/JKSAS.2020.48.9.653.
  26. Kim, H.I., Sim, C.H., Park, J.S., Lee, K., Yoo, J.T. and Yoon, Y.H. (2020b), "Numerical derivation of buckling knockdown factors for isogrid-stiffened cylinders with various shell thickness ratios", Int. J. Aerosp. Eng., 2020, Article ID 9851984. https://doi.org/10.1155/2020/9851984.
  27. Lo, H., Crate, H. and Schwartz, E.B. (1951), "Buckling of thin-walled cylinder under axial compression and internal pressure", Report No. NACA/TR-1027, National Aeronautics and Space Administration.
  28. Shahgholian-Ghahfarokhi, D., Rahimi, G., Liaghat, G., Degenhardt, R. and Franzoni, F. (2020), "Buckling prediction of composite lattice sandwich cylinders (CLSC) through the vibration correlation technique (VCT): Numerical assessment with experimental and analytical verification", Compos. Part B, 199, 108252. https://doi.org/10.1016/j.compositesb.2020.108252.
  29. Sim, C.H., Kim, H.I., Park, J.S. and Lee, K. (2019a), "Derivation of knockdown factors for grid-stiffened cylinders considering various shell thickness ratios", Aircraft Eng. Aerosp. Technol., 91(10), 1314-1326. https://doi.org/10.1108/AEAT-11-2018-0272.
  30. Sim, C.H., Park, J.S., Kim, H.I., Lee, Y.L. and Lee, K. (2018b), "Postbuckling analyses and derivations of knockdown factors for hybrid-grid stiffened cylinders", Aerosp. Sci. Technol., 82-83, 20-31. https://doi.org/10.1016/j.ast.2018.08.025.
  31. Sim, C.H., Kim, H.I., Lee, Y.L., Park, J.S. and Lee, K. (2018c), "Derivations of knockdown factors for cylindrical structures considering different initial imperfection models and thickness ratios", Int. J. Aeronaut. Space Sci., 19(3), 626-635. https://doi.org/10.1007/s42405-018-0069-4.
  32. Skukis, E., Jekabsons, G. anderson, J., Ozolins, O., Labans, E. and Kalnins, K. (2020b), "Robustness of empirical vibration correlation techniques for predicting the instability of unstiffened cylindrical composite shells in axial compression", Polym., 12(12), 3069. https://doi.org/10.3390/polym12123069.
  33. Skukis, E., Ozolins, O., Kalnins, K. and Arbelo, M.A. (2017a), "Experimental test for estimation of buckling load on unstiffened cylindrical shells by vibration correlation technique", Procedia Eng., 172, 1023-1030. https://doi.org/10.1016/j.proeng.2017.02.154.
  34. Souza, M.A., Fok, W.C. and Walker, A.C. (1983), "Review of experimental techniques for thin-walled structures liable to buckling", Exp. Techniq., 7, 21-25. https://doi.org/10.1111/j.1747-1567.1983.tb01811.x.
  35. Tian, K., Huang, L., Sun, Y., Zhao, L., Gao, T. and Wang. B. (2022b), "Combined approximation based numerical vibration correlation for axially loaded cylindrical shells", Eur. J. Mech., 93, Article ID 104553. https://doi.org/10.1016/j.euromechsol.2022.104553.
  36. Tian, K., Huang, L., Yang, M., Chen, Y., Hao, P. and Wang, B. (2022a), "Concurrent numerical implementation of vibration correlation technique for fast buckling load prediction of cylindrical shells under combined loading conditions", Eng. Comput., 38, 3269-3281. https://doi.org/10.1007/s00366-021-01458-9.
  37. Virgin, L.N. and Plaut, R.H. (1993), "Effect of axial load on forced vibrations of beams", J. Sound Vib., 168, 395-405. https://doi.org/10.1006/jsvi.1993.1382.
  38. Wagner, H.N.R. and Huhne, C. (2018), "Robust knockdown factors for the design of cylindrical shells under axial compression: Potentials, practical application and reliability analysis", Int. J. Mech. Sci., 135, 410-430. https://doi.org/10.1016/j.ijmecsci.2017.11.020.
  39. Wang, B., Du, K., Hao, P., Zhou, C., Tian, K., Xu, S., Ma, Y. and Zhang, X. (2016b), "Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression", Thin Wall. Struct., 109, 13-24. https://doi.org/10.1016/j.tws.2016.09.008.
  40. Wang, B., Tian, K., Zhou, C., Hao, P., Zheng, Y., Ma, Y. and Wang, J. (2017a), "Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity", Aerosp. Sci. Technol., 62, 114-121. https://doi.org/10.1016/j.ast.2016.12.002.
  41. Weingarten, V.I., Seide, P. and Peterson, J.P. (1968), "Buckling of thin-walled circular cylinders-NASA SP-8007", Report No. NASA/SP-8007-2020/REV2, National Aeronautics and Space Administration.
  42. Yang, H., Feng, S., Hao, P., Ma, X., Wang, B., Xu, W. and Gao, Q. (2022), "Uncertainty quantification for initial geometric imperfections of cylindrical shells: A novel bi-stage random field parameter estimation method", Aerosp. Sci. Technol., 124, 107554. https://doi.org/10.1016/j.ast.2022.107554.
  43. Zhao, Y., Chen, M., Yang, F., Zhang, L. and Fang, D. (2017), "Optimal design of hierarchical grid-stiffened cylindrical shell structures based on linear buckling and nonlinear collapse analyses", Thin Wall. Struct., 119, 315-323. https://doi.org/10.1016/j.tws.2017.06.019.