Acknowledgement
This work was supported by research on the Korea Space Launch Vehicle (KSLV-II) funded by the Ministry of Science and ICT (MSIT, Korea). The work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022M1A3B8076744).
References
- Abramovich, H., Govich, D. and Grunwald, A. (2015), "Buckling prediction of panels using the vibration correlation technique", Progress in Aerospace Sciences, 78, 62-73. https://doi.org/10.1016/j.paerosci.2015.05.010.
- Arbelo, M.A., De Almeida, S.F., Donadon, M.V., Rett, S.R., Degenhardt, R., Castro, S.G., Kalnin, K. and Ozolins, O. (2014), "Vibration correlation technique for the estimation of real boundary conditions and buckling load of unstiffened plates and cylindrical shells", Thin Wall. Struct., 79, 119-128. https://doi.org/10.1016/j.tws.2014.02.006.
- Baciu, T., Degenhardt, R., Franzoni, F., Gliszczynski, A., Arbelo, M.A., Castro, S.G. and Kalnins, K. (2023), "Sensitivity analysis for buckling characterization using the vibration correlation technique", Thin Wall. Struct., 183, 110329. https://doi.org/10.1016/j.tws.2022.110329.
- Degenhardt, R. (2014a), "New robust design guideline for imperfection sensitive composite launcher structures-The DESICOS project", Proceedings of the 13th European Conference on Spacecraft Structures, Materials and Environment Testing.
- Degenhardt, R., Kling, A., Zimmermann, R., Odermann, F. and Araujo, F.C. (2012b), "Chapter dealing with imperfection sensitivity of composite structures prone to buckling", InTechOpen Ltd.: London, United Kingdom.
- Deml, M. and Wunderlich, W. (1997), "Direct evaluation of the 'worst' imperfection shape in shell buckling", Comput. Meth. Appl. Mech. Eng., 149, 201-222. https://doi.org/10.1016/S0045-7825(97)00055-8.
- Franzoni, F., Degenhardt, R., Albus, J. and Arbelo, M.A. (2019a), "Vibration correlation technique for predicting the buckling load of imperfection-sensitive isotropic cylindrical shells: An analytical and numerical verification", Thin Wall. Struct., 140, 236-247. https://doi.org/10.1016/j.tws.2019.03.041.
- Franzoni, F., Odermann, F., Wilckens, D., Skukis, E., Kalnins, K., Arbelo, M.A. and Degenhardt, R. (2019b), "Assessing the axial buckling load of a pressurized orthotropic cylindrical shell through vibration correlation technique", Thin Wall. Struct., 137, 353-366. https://doi.org/10.1016/j.tws.2019.01.009.
- Graham, J.B. and Luz, P.L. (1998), "Preliminary in-flight loads analysis of in-line launch vehicles using the VLOADS 1.4 Program", Report No. NASA/TM-1998-208472, National Aeronautics and Space Administration.
- Hao, P., Duan, Y., Liu, D., Yang, H., Liu, D. and Wang, B. (2023d), "Image-driven intelligent prediction of buckling behavior for geometrically imperfect cylindrical shells", Am. Inst. Aeronaut. Astronaut. J., 61, 2266-2280. https://doi.org/10.2514/1.J062470.
- Hao, P., Wang, B., Li, G., Meng, Z., Tian, K. and Tang, X. (2014b), "Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method", Thin Wall. Struct., 82, 46-54. https://doi.org/10.1016/j.tws.2014.04.004.
- Hao, P., Wang, B., Li, G., Meng, Z., Tian, K., Zeng, D. and Tang, X. (2014a), "Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors", Thin Wall. Struct., 82, 321-330. https://doi.org/10.1016/j.tws.2014.05.004.
- Hao, P., Wang, Y., Jin, L., Ma, S. and Wang, B. (2023c), "An isogeometric design-analysis-optimization workflow of stiffened thin-walled structures via multilevel NURBS-based free-form deformations (MNFFD)", Comput. Meth. Appl. Mech. Eng., 408, 115936. https://doi.org/10.1016/j.cma.2023.115936.
- Hilburger, M.W. (2015a), "Shell buckling knockdown factor project overview and status", Report No. NASA/NF1676L-21449, National Aeronautics and Space Administration.
- Hilburger, M.W. (2018d), "On the development of shell buckling knockdown factors for stiffened metallic launch vehicle cylinders", Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
- Hilburger, M.W., Waters, W.A.J. and Haynie W.T. (2015b), "Buckling test results from the 8-foot-diameter orthogrid-stiffened cylinder test article TA01", Report No. NF1676L-20067, National Aeronautics and Space Administration.
- Hilburger, M.W., Waters, W.A.J., Haynie W.T. and Thornburgh, R.P. (2017c), "Buckling test results from the 8-foot-diameter orthogrid-stiffened cylinder test article TA02", Report No. NASA/TP-2017-219587, L-20801, NF1676L-26704, National Aeronautics and Space Administration. https://doi.org/10.1016/j.tws.2008.01.043.
- Huhne, C., Rolfes, R., Breitbach, E. and Tessmer, J. (2008), "Robust design of composite cylindrical shells under axial compression-Simulation and validation", Thin Wall. Struct., 46, 947-962. https://doi.org/10.1016/j.tws.2008.01.043.
- Jeon, M.H., Cho, H.J., Sim, C.H., Kim, Y.J., Lee, M.Y. and Kim, I.G. (2023), "Experimental and numerical approach for predicting global buckling load of pressurized unstiffened cylindrical shells using vibration correlation technique", Compos. Struct., 305, 116460. https://doi.org/10.1016/j.compstruct.2022.116460.
- Johnson, E.E. and Goldhammer, B.F. (1952), A Determination of the Critical Load of a Column or Stiffened Panel in Compression by the Vibration Method, David W. Taylor Model Basin, Navy Department.
- Kalnins, K., Arbelo, M.A., Ozolins, O., Skukis, E., Castro, S.G.P. and Degenhardt, R. (2015), "Experimental nondestructive test for estimation of buckling load on unstiffened cylindrical shells using vibration correlation technique", Shock Vib., 2015, Article ID 729684. https://doi.org/10.1155/2015/729684.
- Kim, D.Y., Sim, C.H., Kim, H.I., Park, J.S., Yoo, J.T., Yoon, Y.H. and Lee, K. (2021a), "Derivations of buckling knockdown factors for composite cylinders considering various shell thickness ratios and slenderness ratios", J. Korean Soc. Aeronaut. Space Sci., 49(4), 321-328. https://doi.org/10.5139/JKSAS.2021.49.4.321.
- Kim, D.Y., Sim, C.H., Park, J.S., Yoo, J.T., Yoon, Y.H. and Lee, K. (2021b), "Derivation of knockdown factors for composite cylinders with various initial imperfection models", Compos. Res., 34(5), 283-289. https://doi.org/10.7234/composres.2021.34.5.283.
- Kim, D.Y., Sim, C.H., Park, J.S., Yoo, J.T., Yoon, Y.H. and Lee, K. (2021c), "Buckling knockdown factors of composite cylinder under both compression and internal pressure", Aerosp., 8(11), 346. https://doi.org/10.3390/aerospace8110346.
- Kim, H.I., Sim, C.H., Park, J.S., Kim, D.Y., Yoo, J.T., Yoon, Y.H. and Lee, K. (2020a), "Postbuckling analyses and derivations of shell knockdown factors for isogrid-stiffened cylinders under compressive force and internal pressure", J. Korean Soc. Aeronaut. Space Sci., 48(9), 653-661. https://doi.org/10.5139/JKSAS.2020.48.9.653.
- Kim, H.I., Sim, C.H., Park, J.S., Lee, K., Yoo, J.T. and Yoon, Y.H. (2020b), "Numerical derivation of buckling knockdown factors for isogrid-stiffened cylinders with various shell thickness ratios", Int. J. Aerosp. Eng., 2020, Article ID 9851984. https://doi.org/10.1155/2020/9851984.
- Lo, H., Crate, H. and Schwartz, E.B. (1951), "Buckling of thin-walled cylinder under axial compression and internal pressure", Report No. NACA/TR-1027, National Aeronautics and Space Administration.
- Shahgholian-Ghahfarokhi, D., Rahimi, G., Liaghat, G., Degenhardt, R. and Franzoni, F. (2020), "Buckling prediction of composite lattice sandwich cylinders (CLSC) through the vibration correlation technique (VCT): Numerical assessment with experimental and analytical verification", Compos. Part B, 199, 108252. https://doi.org/10.1016/j.compositesb.2020.108252.
- Sim, C.H., Kim, H.I., Park, J.S. and Lee, K. (2019a), "Derivation of knockdown factors for grid-stiffened cylinders considering various shell thickness ratios", Aircraft Eng. Aerosp. Technol., 91(10), 1314-1326. https://doi.org/10.1108/AEAT-11-2018-0272.
- Sim, C.H., Park, J.S., Kim, H.I., Lee, Y.L. and Lee, K. (2018b), "Postbuckling analyses and derivations of knockdown factors for hybrid-grid stiffened cylinders", Aerosp. Sci. Technol., 82-83, 20-31. https://doi.org/10.1016/j.ast.2018.08.025.
- Sim, C.H., Kim, H.I., Lee, Y.L., Park, J.S. and Lee, K. (2018c), "Derivations of knockdown factors for cylindrical structures considering different initial imperfection models and thickness ratios", Int. J. Aeronaut. Space Sci., 19(3), 626-635. https://doi.org/10.1007/s42405-018-0069-4.
- Skukis, E., Jekabsons, G. anderson, J., Ozolins, O., Labans, E. and Kalnins, K. (2020b), "Robustness of empirical vibration correlation techniques for predicting the instability of unstiffened cylindrical composite shells in axial compression", Polym., 12(12), 3069. https://doi.org/10.3390/polym12123069.
- Skukis, E., Ozolins, O., Kalnins, K. and Arbelo, M.A. (2017a), "Experimental test for estimation of buckling load on unstiffened cylindrical shells by vibration correlation technique", Procedia Eng., 172, 1023-1030. https://doi.org/10.1016/j.proeng.2017.02.154.
- Souza, M.A., Fok, W.C. and Walker, A.C. (1983), "Review of experimental techniques for thin-walled structures liable to buckling", Exp. Techniq., 7, 21-25. https://doi.org/10.1111/j.1747-1567.1983.tb01811.x.
- Tian, K., Huang, L., Sun, Y., Zhao, L., Gao, T. and Wang. B. (2022b), "Combined approximation based numerical vibration correlation for axially loaded cylindrical shells", Eur. J. Mech., 93, Article ID 104553. https://doi.org/10.1016/j.euromechsol.2022.104553.
- Tian, K., Huang, L., Yang, M., Chen, Y., Hao, P. and Wang, B. (2022a), "Concurrent numerical implementation of vibration correlation technique for fast buckling load prediction of cylindrical shells under combined loading conditions", Eng. Comput., 38, 3269-3281. https://doi.org/10.1007/s00366-021-01458-9.
- Virgin, L.N. and Plaut, R.H. (1993), "Effect of axial load on forced vibrations of beams", J. Sound Vib., 168, 395-405. https://doi.org/10.1006/jsvi.1993.1382.
- Wagner, H.N.R. and Huhne, C. (2018), "Robust knockdown factors for the design of cylindrical shells under axial compression: Potentials, practical application and reliability analysis", Int. J. Mech. Sci., 135, 410-430. https://doi.org/10.1016/j.ijmecsci.2017.11.020.
- Wang, B., Du, K., Hao, P., Zhou, C., Tian, K., Xu, S., Ma, Y. and Zhang, X. (2016b), "Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression", Thin Wall. Struct., 109, 13-24. https://doi.org/10.1016/j.tws.2016.09.008.
- Wang, B., Tian, K., Zhou, C., Hao, P., Zheng, Y., Ma, Y. and Wang, J. (2017a), "Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity", Aerosp. Sci. Technol., 62, 114-121. https://doi.org/10.1016/j.ast.2016.12.002.
- Weingarten, V.I., Seide, P. and Peterson, J.P. (1968), "Buckling of thin-walled circular cylinders-NASA SP-8007", Report No. NASA/SP-8007-2020/REV2, National Aeronautics and Space Administration.
- Yang, H., Feng, S., Hao, P., Ma, X., Wang, B., Xu, W. and Gao, Q. (2022), "Uncertainty quantification for initial geometric imperfections of cylindrical shells: A novel bi-stage random field parameter estimation method", Aerosp. Sci. Technol., 124, 107554. https://doi.org/10.1016/j.ast.2022.107554.
- Zhao, Y., Chen, M., Yang, F., Zhang, L. and Fang, D. (2017), "Optimal design of hierarchical grid-stiffened cylindrical shell structures based on linear buckling and nonlinear collapse analyses", Thin Wall. Struct., 119, 315-323. https://doi.org/10.1016/j.tws.2017.06.019.