DOI QR코드

DOI QR Code

Analysis Program for Offshore Wind Energy Substructures Embedded in AutoCAD

오토캐드 환경에서 구현한 해상풍력 지지구조 해석 프로그램

  • Received : 2023.05.18
  • Accepted : 2023.07.18
  • Published : 2023.08.31

Abstract

Wind power is one of the most efficient and reliable energy sources in the transition to a low-carbon society. In particular, offshore wind power provides a high-quality and stable wind resource compared to onshore wind power while both present a higher installed capacity than other renewables. In this paper, we present our new program, the X-WIND program well suitable for the assessment of the substructure of offshore wind turbines. We have developed this program to increase the usability of analysis programs for offshore wind energy substructures by addressing the shortcomings of existing programs. Unlike the existing programs which cannot solely perform the substructure analyses or lack pre-post processors, our X-WIND program can complete the assessment analysis for the offshore wind turbines alone. The X-WIND program is embedded in AutoCAD so that both design and analysis are performed on a single platform. This also performs static and dynamic analysis for wind, wave, and current loads, essential for offshore wind power structures, and includes pre/post processors for designs, mesh developments, graph plotting, and code checking. With this expertise, our program enhances the usability of analysis programs for offshore wind energy substructures, promoting convenience and efficiency.

풍력에너지는 저탄소 사회로 전환하는 과정에서 가장 효율적이고 신뢰할 수 있는 에너지원 중 하나이다. 특히 해상 풍력은 육상 풍력에 비해 안정적이고 고품질의 풍력 자원을 제공하며, 다른 재생에너지에 비해 설치 용량이 높다. 본 논문에서는 해상 풍력 터빈의 하부 구조물 해석에 적합한 새로운 프로그램인 X-WIND 프로그램에 대해 소개하였다. 이 프로그램은 기존 프로그램의 단점을 보완하여 해상풍력 하부구조 해석 프로그램의 활용성을 높이기 위해 개발되었다. 하나의 프로그램 내에서 하부구조물을 단독으로 해석할 수 없거나 전후처리기가 미비한 기존 프로그램과 달리, X-WIND 프로그램은 AutoCAD에 내장되어 있어 설계와 해석이 모두 단일 플랫폼에서 수행된다. 또한 해상 풍력 구조물에 필수적인 바람, 파도, 조류 하중에 대한 정적 및 동적 해석을 수행하며 설계, 요소망 생성, 그래프 생성, ULS/FLS 체크를 위한 전후처리기가 포함되어 있다. 이러한 특징을 바탕으로 해상 풍력 에너지 하부 구조물 해석 프로그램의 효율성과 사용성을 향상시켰다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20213030020200, 해상풍력시스템 통합하중해석 프로그램 개발).

References

  1. Yi, J. H., Park, S., and Yim, S. (2019), Comparison of Dynamic Characteristics of a Wind and Photovoltaic Hybrid Light Pole Structure with 2-bladed and 3-bladed Vertical Axis Turbine Rotors Using Vibration Measurement under Normal Operation Conditions, Korea Institute for Structural Maintenance and Inspection, KSMI, 23(5), 118-125 (in Korean, with English abstract).
  2. Ministry of Environment. (2018), Revised 2030 GHG Reduction Roadmap and 2018-2020 Emissions Allocation Plan. Available at: www.me.go.kr.
  3. Ministry of Trade, Industry and Energy. (2022), Renewable energy environment improvement plan according to energy environment change. Available at: www.motie.go.kr.
  4. Lee, J. W., Bang, J. S., Kim, S. R., and Han, J. W. (2012), Damage Estimation Method for Wind Turbine Tower Using Modal Properties, Korea Institute for Structural Maintenance and Inspection, KSMI, 16(2), 87-94 (in Korean, with English abstract). https://doi.org/10.11112/jksmi.2012.16.2.087
  5. Ministry of Trade, Industry and Energy. (2022), Renewable energy environment improvement plan according to energy environment change. Available at: https://gwec.net
  6. Jonkman, J. M. (2009), Dynamics of offshore floating wind turbines-model development and verification, Wind Energy, 12(5), 459-492. https://doi.org/10.1002/we.347
  7. Oh, H., Seo, G., Kim, S., Ko, S., and Lee, H. (2014), An Experimental Study on the Bonding Characteristic of Steel Tubular Joint Connection filled with Fiber Reinforced High Performance Cementeous Grout, Korea Institute for Structural Maintenance and Inspection, KSMI, 18(6), 21-29 (in Korean, with English abstract). https://doi.org/10.11112/jksmi.2014.18.6.021
  8. Kim, H. J. (2013), An Introduction to Floating Wind Turbines, Journal of the Computational Structural Engineering Institute of Korea, COSEIK, 26(3), 19-24 (in Korean). https://doi.org/10.7734/COSEIK.2013.26.1.19
  9. Naess, A., and Moan, T. (2012). Random Environmental Processes. In Stochastic Dynamics of Marine Structures, Cambridge University Press, 191-208.
  10. Moriarty, P. J., and Hansen, A. C. (2005), AeroDyn Theory Manual. Available at: https://www.osti.gov
  11. Cheng, P., Huang, Y., and Wan, D., (2019), A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine, Ocean Engineering, Elsvier, 173, 183-196. https://doi.org/10.1016/j.oceaneng.2018.12.021
  12. Waris, M. B., and Ishihara, T. (2012). Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model, Coupled Systems Mechanics, Techno-Press, 1(3), 247-268. https://doi.org/10.12989/csm.2012.1.3.247
  13. Hong, D. C., and Hong, K. Y. (2013), Prediction of Wave Energy Absorption Efficiency and Wave Loads of a Three-Dimensional Bottom-Mounted OWC Wave Power Device, Journal of the Korean Society for Marine Environmental Engineering, KAOSTS, 13(1), 47-52 (in Korean, with English abstract).
  14. Scottish Government. (2017), RHywind Scotland Pilot Park Project Plan for Construction Activities. Available at: https://marine.gov.scot/
  15. Jung, D. H., Shin, S. H., Kim, H. J., and Lee, H. S. (2011), A Preliminary Design of Mooring System for Floating Wave Energy Converter, Journal of the Korean Society for Marine Environment, KAOSTS, 13(1), 47-52 (in Korean, with English abstract).
  16. National Renewable Energy Laboratory. (2023) MAP++: Mooring Analysis Program. Available at: www.nrel.gov
  17. Kim, D., Poguluri, S. K., and Bea, Y. H. (2020), Numerical Study on Linear Behavior of Arrayed Pitch Motion Wave Energy Converters, Journal of the Korean Society for Marine Environment and Energy, KOMEE, 23(4), 269-276 (in Korean, with English abstract). https://doi.org/10.7846/JKOSMEE.2020.23.4.269
  18. Lee, H., and Bea, Y. K. (2019), Development and Validation of an Aerodynamic Analysis Code for Vertical-axis Wind Turbines Using AeroDyn, Journal of Wind Energy, KWEA, 10(1), 48-54 (in Korean, with English abstract). https://doi.org/10.33519/kwea.2019.10.1.006
  19. Lee, H., Bea, Y. K., Kim, D., Park, S., Kim, K., and Hong, K. (2018), Study on optimal damping model of very large offshore semi-submersible structure, Journal of Ocean Engineering and Technology, KSOE, 32(1), 1-8 (in Korean, with English abstract). https://doi.org/10.26748/KSOE.2018.2.32.1.001
  20. Lee, H., Bea, Y. K., and Cho, I. H. (2016), One-way Coupled Response Analysis between Floating Wind-Wave Hybrid Platform and Wave Energy Converters, Journal of Ocean Engineering and Technology, KSOE, 30(2), 84-90 (in Korean, with English abstract). https://doi.org/10.5574/KSOE.2016.30.2.084
  21. Kim, M., and Lee, K. (2012), Hydrodynamic force calculation and motion analysis of OC3 Hywind floating offshore wind turbine platform, Journal of the Korean Society of Marine Engineering, KOSME, 37(8), 953-961 (in Korean, with English abstract). https://doi.org/10.5916/jkosme.2013.37.8.953
  22. Lee, C. H., and Newman, J. N. (2006), Wamit user manual. Available at: www.wammit.com
  23. Waris, J. N. (1994), Wave effects on deformable bodies, Applied Ocean Resesarch, Elsevier, 16(1), 47-59. https://doi.org/10.1016/0141-1187(94)90013-2
  24. Lamei, A., and Hayatdavoodi, M. (2020), On motion analysis and elastic response of floating offshore wind turbines, Journal of Ocean Engineering and Marine Energy, Springer, 6, 71-90. https://doi.org/10.1007/s40722-019-00159-2
  25. Pham, M. (2022), Offshore Wind's Advanced Engineering Solution. Available at: www.bentley.com
  26. Parkinson, S., and Han, K. (2022), Improve your floating wind simulations using Bladed and Sesam. Available at: www.dnv.com
  27. National Renewable Energy Laboratory. (2023) OpenFAST. Available at: www.nrel.gov
  28. Hughes, T. J. R., Cottrell, J. A., and Bazileves, Y. (2005), Isogeometric Analysis: CAD, FInite Elements NURBS, Exact Geometry and Mesh Refinement, Computer Method in Applied Mechanics and Engineering, Elsevier, 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  29. Zi, G., and Kim, K. (2020), Development of Structural Analysis Software for Fixed and Floating Offshore Wind Energy Structures Coupled with X-SEA and OpenFAST, Journal of Wind Energy, KWEA, 11(2), 5-13. https://doi.org/10.33519/KWEA.2020.11.2.001
  30. Nurseitov, N., Paulson, M., Reynolds, R., and Izurieta, C. (2009), Comparison of JSON and XML Data Interchange Formats: A Case Study, ISCA International Conference on Computer Applications in Industry and Engineering. Society for Computers and Their Applications, 157-162.
  31. Seo, J., Maeng, J., Lim, E., Jin, S., Kim, H., and Kim, T. (2019), Marine Environmental Characteristics around the Test Phase of Offshore Wind Farm in the Southwestern Coast of Yellow Sea, Journal of Environmental Impact Assessment, KSEIA, 28(5), 457-470 (in Korean, with English abstract). https://doi.org/10.14249/EIA.2019.28.5.457
  32. Shim, W., and Ahn, J., Kwak, D., Bea, K., and Zi, G. (2018), Design of vertically adjustable transition piece of concrete gravity based substructure for offshore wind turbin, Korea Institute for Structural Maintenance and Inspection, KSMI, 22(4), 42-51 (in Korean, with English abstract).