DOI QR코드

DOI QR Code

Application of rip current likelihood distributions on rip current forecast system

이안류 예보를 위한 이안류 발생정도 분포 함수의 적용

  • Choi, Junwoo (Coastal Research Laboratory, Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering & Building Technology)
  • 최준우 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2023.07.05
  • Accepted : 2023.07.27
  • Published : 2023.08.31

Abstract

An approach for producing a rip current risk index using the rip current likelihood distribution obtained through the FUNWAVE simulations was applied to a rip current forecast system. The approach originally developed for an observation-based real-time rip current warning system was utilized with wave forecast data instead of observations for the rip current forecast system. The availability of the present approach was checked by comparing the observation-based rip current risk index and the wave forecast-based rip current risk index of the Haeundae Beach in 2021.

FUNWAVE 이안류 수치모의를 통해 얻은 이안류 발생정도 분포(파고-주기, 파고-조위, 파고-파향, 파고-주파수 스펙트럼 광협도, 파고-파향 스펙트럼 광협도)를 이용한 이안류 위험지수 생산 기법을 이안류 예보체계에 적용하였다. 이 기법은 관측 기반의 실시간 이안류 경보체계를 위해 개발되었으나, 관측정보를 대신하여 파랑예보 정보를 사용하므로 예보체계에 활용하였다. 2021년 해운대 해수욕장에 대하여 관측 기반으로 생산된 이안류 위험지수와 파랑예보 기반의 지수를 비교하여 그 가능성을 검토하였다.

Keywords

Acknowledgement

본 연구는 해양수산부 국립해양조사원의 "실시간 이안류 감시체계 서비스" 사업의 지원으로 수행되었습니다.

References

  1. Brander, R., Dominey-Howes, D., Champion, C., Del Vecchio, O., and Brighton, B. (2013). "Brief Communication: A new perspective on the Australian rip current hazard." Natural Hazards and Earth System Sciences, Vol. 13, pp. 1687-1690. https://doi.org/10.5194/nhess-13-1687-2013
  2. Castelle, B., Scott, T., Brander, R.W., and McCarroll, R.J. (2016). "Rip current types, circulation and hazard." Earth-Science Reviews, Vol. 163, pp. 1-21. https://doi.org/10.1016/j.earscirev.2016.09.008
  3. Chen, Q., Dalrymple, R.A., Kirby, J.T., Kennedy, A.B., and Haller, M. (1999). "Boussinesq modelling of a rip current system." Journal of Geophysical Research, Vol. 104, pp. 20617-20637. https://doi.org/10.1029/1999JC900154
  4. Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A.B., and Chawla, A. (2000). "Boussinesq modeling of wave transformation, breaking and runup II: Two horizontal dimensions." Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 126, No. 1, pp. 48-56. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(48)
  5. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F., and Thornton, E.B. (2003). "Boussinesq modeling of longshore current." Journal of Geophysical Research, Vol. 108, No. C11, pp. 26-1-26-18. https://doi.org/10.1029/2002JC001308
  6. Choi, J. (2014). "Study of rip current warning index function according to real-time observations at Haeundae Beach in 2012." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 4, pp. 1191-1201 (in https://doi.org/10.12652/Ksce.2014.34.4.1191
  7. Choi, J. (2015). "Numerical simulations of rip currents under phaseresolved directional random wave conditions." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 27, No. 4, pp. 238-245(in https://doi.org/10.9765/KSCOE.2015.27.4.238
  8. Choi, J. (2022a). "A modification of the rip current warning system utilizing real-time observations: A database function of rip current likelihood distributions." Journal of Korea Water Resources Association, Vol. 55, No. 10, pp. 843-854.
  9. Choi, J. (2022b). "A numerical study on rip currents at the Haeundae coast changed after the beach nourishment." Journal of Korea Water Resources Association, Vol. 55, No. 9, pp. 669-678.
  10. Choi, J., Kirby, J.T., and Yoon, S.B. (2015). "Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions." Coastal Engineering, Vol. 101, pp. 17-34. https://doi.org/10.1016/j.coastaleng.2015.04.005
  11. Choi, J., Park, W.K., Bae, J.S., and Yoon, S.B. (2012). "Numerical study on a dominant mechanism of rip current at Haeundae beach: Honeycomb pattern of waves." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5B, pp. 321-320 (in Korean).
  12. Choi, J., Shin, C.H., and Yoon, S.B. (2013). "Numerical study on sea state parameters affecting rip current at Haeundae beach: Wave period, height, direction and tidal elevation." Journal of Korea Water Resources Association, Vol. 46, No. 2, pp. 205-218 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.2.205
  13. Clark, D.B., Elgar, S., and Raubenheimer, B. (2012). "Vorticity generation by short-crested wave breaking." Geophysical Research Letters, Vol. 39, L24604, doi: 10.1029/2012GL054034.
  14. Dalrymple, R.A. (1975). "A mechanism for rip current generation on an open coast." Journal of Geophysical Research, Vol. 80, pp. 3485-3487. https://doi.org/10.1029/JC080i024p03485
  15. Dalrymple, R.A. (1978). "Rip currents and their causes." 16th international Conference of Coastal Engineering, Hamburg, Germany, pp. 1414-1427.
  16. Dalrymple, R.A., MacMahan, J.H., Reniers, A.J.H.M., and Nelko, V. (2011). "Rip currents." Annual Review of Fluid Mechanics, Vol. 43, pp. 551-581. https://doi.org/10.1146/annurev-fluid-122109-160733
  17. Dusek, G., and Seim, H. (2013). "A probabilistic rip current forecast model." Journal of Coastal Research, Vol. 29, No. 4, pp. 909-925. https://doi.org/10.2112/JCOASTRES-D-12-00118.1
  18. Engle, J. (2003). Formulation of a rip current forecasting technique through statistical analysis of rip current-related rescues. Master's Thesis, University of Florida, Gainesville, FL, U.S.
  19. Feddersen, F. (2014). "The generation of surfzone eddies in a strong alongshore current." Journal of Physical Oceanography, Vol. 44, pp. 600-617. https://doi.org/10.1175/JPO-D-13-051.1
  20. Gensini, V.A., and Ashley, W.S. (2010). "An examination of rip current fatalities in the United States." Natural Hazards, Vol. 54, No. 1, pp. 159-175. https://doi.org/10.1007/s11069-009-9458-0
  21. Johnson, D., and Pattiaratchi, C. (2006). "Boussinesq modelling of transient rip currents." Coastal Engineering, Vol. 53, pp. 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  22. Kennedy, A.B., Chen, Q., Kirby, J.T., and Dalrymple, R.A. (2000). "Boussinesq modeling of wave transformation, breaking, and runup. I: 1D", Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 126, pp. 39-47. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
  23. Korea Hydrographic and Oceanographic Agency (KHOA) (2021) Report for operation of rip current warning system in 2021.
  24. Lascody, R. (1998). "East central Florida rip current program." National Weather Digest, Vol. 22, pp. 25-30.
  25. Lushine, J. (1991). "A study of rip current drownings and related weather factors." National Weather Digest, Vol. 16, pp. 13-19.
  26. Moulton, M, Dusek, G, Elgar, S., and Raubenheimer, B. (2017). "Comparison of rip current hazard likelihood forecasts with observed rip current speeds." Weather and Forecasting, Vol. 32, pp. 1659-1666. https://doi.org/10.1175/WAF-D-17-0076.1
  27. National Oceanic and Atmospheric Administration (NOAA) (2022a). Weather related fatality and injury statistics, national weather service, accessed 1 September 2022, .
  28. National Oceanic and Atmospheric Administration (NOAA) (2022b). Natural hazard statistics, national weather service, Accessed 1 September 2022, .
  29. Nelko, V, and Dalrymple, R.A. (2008). "Rip currents: mechanisms and observations." Proceeding of 31st International Conference Coastal Engineering, World Sci., Singapore, pp. 888-900.
  30. Peregrine, D.H. (1998). "Surf zone currents." Theoretical and Computational Fluid Dynamics, Vol. 10, pp. 295-309. https://doi.org/10.1007/s001620050065
  31. Peregrine, D.H. (1999). "Large-scale vorticity generation by breakers in shallow and deep water." European Journal of Mechanics. B., Vol. 18, pp. 403-408. https://doi.org/10.1016/S0997-7546(99)80037-5
  32. Schrader, M. (2004). Evaluation of the modified ECFL LURCS rip current forecasting scale and conditions of selected rip current events in Florida. Master's Thesis, University of Florida, Gainesville, FL, U.S.
  33. Shin, C.H., Noh, H.K., Yoon, S.B., and Choi, J. (2014). "Understanding of rip current generation mechanism at Haeundae Beach of Korea: Honeycomb waves." Journal of. Coastal Research, Vol. 72, Special Issue, pp. 11-15. https://doi.org/10.2112/SI72-003.1
  34. Tang, E.-S., and Dalrymple, R.A. (1989). "Nearshore circulation: Rip currents and wave groups." Advances in Coastal and Ocean Engineering. Plenum Press, New York, pp. 205-230.
  35. Wei, G., Kirby, J.T., Grilli, S.T., and Subramanya, R. (1995) "A fully nonlinear Boussinesq model for surface waves: Part 1: Highly nonlinear unsteady waves." Journal of Fluid Mechanics, Vol. 294, pp. 71-92. https://doi.org/10.1017/S0022112095002813
  36. Yoon, S.B., Kwon, S.J., Bae, J.S., and Choi, J. (2012). "Investigation of characteristics of rip current at Haeundae beach based on observation analysis and numerical experiments." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 4B, pp. 243-251 (in Korean).  https://doi.org/10.12652/Ksce.2012.32.4B.243