DOI QR코드

DOI QR Code

Red mud/fly ash 기반 geopolymer 흡착제의 소성온도에 따른 특성 및 흡착거동

Characterization and Adsorption Properties of Red Mud/Fly Ash Based Geopolymers Adsorbent with Calcination Temperature

  • 신진영 (전남대학교 공학대학 화공생명공학과) ;
  • 김한성 (전남대학교 공학대학 화공생명공학과) ;
  • 강화영 (한영대학교 화공산업공학과) ;
  • 윤순도 (전남대학교 공학대학 화공생명공학과)
  • Jin-Yeong Shin (Department of Biomolecular and Chemical Engineering, Chonnam National University) ;
  • Han-Seong Kim (Department of Biomolecular and Chemical Engineering, Chonnam National University) ;
  • Hwa-Yeong Kang (Department of Chemical and Industrial Engineering, Hanyeong University) ;
  • Soon-Do Yoon (Department of Biomolecular and Chemical Engineering, Chonnam National University)
  • 투고 : 2023.06.07
  • 심사 : 2023.06.29
  • 발행 : 2023.08.10

초록

본 연구는 red mud와 fly ash 기반 geopolymer 흡착제(RFGPA)를 소성 온도 변화(200, 400, 600 ℃)에 따라 제조하고 소성 온도가 methylene blue (MB)의 흡착에 미치는 영향을 조사하였다. 또한, X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), 및 Brunauer-Emmett-Teller (BET) 분석을 통해 제조한 RFGPA의 특성을 조사하였다. MB를 이용한 소성 온도에 따른 RFGPA의 흡착 kinetics 결과 약 72시간에 MB 흡착 평형에 도달하였고, 흡착 isotherm 결과 MB 농도가 증가함에 따라 흡착 정도가 증가하는 경향을 보였다. 또한, RFGPA에 대해 소성 온도가 증가할수록 MB 흡착량이 감소하는 것을 확인하였다. RFGPA의 MB 흡착메커니즘을 확인하기 위해 수학적 모델식에 적용한 결과 상대적으로 Freundlich와 Sips 모델이 Langmuir 모델 보다 더 적합한 것을 확인하였다. 제조한 RFGPA 내에 존재하는 Fe2O3에 대한 MB의 광분해 효과를 확인하기 위해 dark condition 및 visible condition에서 MB 분해 정도를 분석한 결과 visible condition에서 분해속도가 dark condition보다 약 3배 빠른 것을 확인하였다.

In this study, red mud/fly ash based geopolymer adsorbents (RFGPA) were prepared with calcination temperatures of 200, 400, and 600 ℃, and the effects of these calcination temperatures on the adsorption of methylene blue (MB) were investigated. In addition, the prepared RFGPA was characterized using X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) spectroscopy, and Brunauer-EmmettTeller (BET) analysis. The results of the adsorption kinetics of MB at RFGPA prepared calcination temperatures indicated that the adsorption equilibrium of MB was reached after about 72 h. From the results of the adsorption isotherm, we verified that the degree of adsorption increased with increasing MB concentrations. In addition, the adsorption amount (Q) of MB decreased with an increase in calcination temperature. The experimental adsorption isotherm data were well fitted to the Freundlich and Sips equations compared to the Langmuir equation. In order to verify the effects of photocatalytic decomposition (C/C0) of MB on Fe2O3 present in prepared RFGPA, the degree of decomposition of MB was examined under dark and visible conditions. Results indicated that the decomposition of MB in visible conditions was about 3.0 times faster than that in dark conditions.

키워드

과제정보

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(Grant No. NRF- 2019R1I1A3A01061508)에 의해 수행하였음.

참고문헌

  1. P. Ghisellini, C. Cialani, and S. Ulgiati, A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems, J. Clean. Prod., 114, 11-32 (2016). https://doi.org/10.1016/j.jclepro.2015.09.007
  2. S. Wang, Y. Boyjoo, A. Choueib, and Z. H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud, Water Res., 39, 129-138 (2005). https://doi.org/10.1016/j.watres.2004.09.011
  3. K. Al-Zboon, M. S. Al-Harahsheh, and F. B. Hani, Fly ash-based geopolymer for Pb removal from aqueous solution, J. Hazard. Mater., 188, 414-421 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.133
  4. L. Li, S. Wang, and Z. Zhu, Geopolymeric adsorbents from fly ash for dye removal from aqueous solution, J. Colloid interface Sci., 300, 52-59 (2006). https://doi.org/10.1016/j.jcis.2006.03.062
  5. Y. Zhang and L. Liu, Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater, Particuology, 11, 353-358 (2013). https://doi.org/10.1016/j.partic.2012.10.007
  6. J. Davidovits, Geopolymers: inorganic polymeric new materials, J. Therm. Anal. Calorim., 37, 1633-1656 (1991). https://doi.org/10.1007/BF01912193
  7. B. Walkley, G. J. Rees, R. San Nicolas, J. S. van Deventer, J. V. Hanna, and J. L. Provis, New structural model of hydrous sodium aluminosilicate gels and the role of charge-balancing extra-framework Al, J. Phys. Chem. C, 122, 5673-5685 (2018).
  8. E. Jamieson, B. McLellan, A. Van Riessen, and H. Nikraz, Comparison of embodied energies of Ordinary Portland Cement with Bayer-derived geopolymer products, J. Clean. Prod., 99, 112-118 (2015). https://doi.org/10.1016/j.jclepro.2015.03.008
  9. J. S. Van Deventer, J. L. Provis, and P. Duxson, Technical and commercial progress in the adoption of geopolymer cement, Miner. Eng., 29, 89-104 (2012). https://doi.org/10.1016/j.mineng.2011.09.009
  10. R. H. Kupaei, U. J. Alengaram, and M. Z. Jumaat, The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete, Sci. World J., 2014 (2014)
  11. A. M. Al Bakri, O. A., Abdulkareem, A. Rafiza, Y. Zarina, M. Norazian, and H. Kamarudin, Review on Processing of low calcium fly ash geopolymer concrete, Aust. J. Basic Appl. Sci., 7, 342-349 (2013).
  12. P. C. Duan, C. Yan, and W. Zhou, Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack, Ceram. Int., 42, 3504-3517 (2016). https://doi.org/10.1016/j.ceramint.2015.10.154
  13. N. Toniolo and A. R. Boccaccini, Fly ash-based geopolymers containing added silicate waste. A review, Ceram. Int., 43, 14545- 14551 (2017). https://doi.org/10.1016/j.ceramint.2017.07.221
  14. T. Bakharev, Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cem. Concr. Res., 36, 1134-1147 (2006). https://doi.org/10.1016/j.cemconres.2006.03.022
  15. M. Criado, A. Palomo, and A. Fernandez-Jimenez, Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products, Fuel, 84, 2048-2054 (2005). https://doi.org/10.1016/j.fuel.2005.03.030
  16. A. Fernandez-Jimenez and Palomo, Composition and microstructure of alkali activated fly ash binder: Effect of the activator, Cem. Concr. Res., 35, 1984-1992 (2005). https://doi.org/10.1016/j.cemconres.2005.03.003
  17. I. M. Nikbin, M. Aliaghazadeh, S. H. Charkhtab, and A. Fathollahpour Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud), J. Clean. Prod., 172, 2683-2694 (2018). https://doi.org/10.1016/j.jclepro.2017.11.143
  18. G. Power, M. Grafe, and C. Klauber, Bauxite residue issues: I. Current management, disposal and storage practices, Hydrometallurgy, 108, 33-45 (2011). https://doi.org/10.1016/j.hydromet.2011.02.006
  19. K. Kaya and S. Soyer-Uzun, Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems, Ceram. Int., 42, 7406-7413 (2016). https://doi.org/10.1016/j.ceramint.2016.01.144
  20. T. Hertel and Y. Pontikes, Geopolymers, inorganic polymers, alkali-activated materials and hybrid binders from bauxite residue (red mud)-Putting things in perspective, J. Clean. Prod., 258, 120610 (2020).
  21. M. Dai, P. Wang, W. Q. Chen, and G. Liu, Scenario analysis of China's aluminum cycle reveals the coming scrap age and the end of primary aluminum boom, J. Clean. Prod., 226, 793-804 (2019). https://doi.org/10.1016/j.jclepro.2019.04.029
  22. S. G. Singaraj, B. Mahanty, D. Balachandran, and A. Padmaprabha, Adsorption and desorption of chromium with humic acid coated iron oxide nanoparticles, Environ. Sci. Pollut. Res., 26, 30044- 30054 (2019). https://doi.org/10.1007/s11356-019-06164-0
  23. R. Sips, The structure of a catalyst surface, J. Chem. Phys., 16, 490-495 (1949). https://doi.org/10.1063/1.1746922
  24. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim., 9, 112-147 (1998). https://doi.org/10.1137/S1052623496303470
  25. E. Sanwani, E. Jeremy, S. K. Chaerun, F. R. Mufakhir, and W. Astuti, Use of mixotrophic bacteria as flocculating agents to separate iron from red mud (alumina refinery residue), J. Sust. Metall., 8, 443-457 (2022). https://doi.org/10.1007/s40831-021-00479-4
  26. P. Cong and Y. Cheng, Advances in geopolymer materials: A comprehensive review, J. Traffic Transp. Eng.-Engl. Ed., 8, 283- 314 (2021).
  27. A. Wang, C. Zhang, and W. Sun, Fly ash effects: I. The morphological effect of fly ash, Cem. Concr. Res., 33, 2023-2029 (2003). https://doi.org/10.1016/S0008-8846(03)00217-5
  28. A. Gok, M. Omastova, and J. Prokes, Synthesis and characterization of red mud/polyaniline composites: electrical properties and thermal stability, Eur. Polym. J., 43, 2471-2480 (2007). https://doi.org/10.1016/j.eurpolymj.2007.03.005
  29. E. Alvarez-Ayuso, X. Querol, F. Plana, A. Alastuey, N. Moreno, M. Izquierdo, O. Font, T, Moreno, S. Diez, E. Vazquez, and M. Barra, Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes, J. Hazard. Mater., 154, 175-183 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.008
  30. S. K. Nath, S. Maitra, S. Mukherjee, and S. Kumar, Microstructural and morphological evolution of fly ash based geopolymers, Constr. Build. Mater., 111, 758-765 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.106
  31. C. Pelekani and V. L. Snoeyink, Competitive adsorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution, Carbon, 38, 1423-1436 (2000). https://doi.org/10.1016/S0008-6223(99)00261-4
  32. H. Saufi, M. El Alouani, S. Alehyen, M. El Achouri, J. Aride, and N. H. Taibi, Photocatalytic degradation of methylene blue from aqueous medium onto perlite-based geopolymer, Int. J. Chem. Eng., 2020, 1-7 (2020).