DOI QR코드

DOI QR Code

Effectiveness of bond strength between normal concrete as substrate and latex-modified sand concrete reinforced with sisal fibers as a repair material

  • Oday Z. Jaradat (Laboratory of Research in Civil Engineering, Mohamed Khider University of Biskra) ;
  • Karima Gadri (Laboratory of Research in Civil Engineering, Mohamed Khider University of Biskra) ;
  • Bassam A. Tayeh (Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza) ;
  • Ahmed M. Maglad (Department of Civil Engineering, Najran University) ;
  • Abdelhamid Guettala (Laboratory of Research in Civil Engineering, Mohamed Khider University of Biskra)
  • Received : 2022.05.18
  • Accepted : 2023.08.12
  • Published : 2023.06.25

Abstract

This study investigated the use of latex-modified sand concrete reinforced with sisal fibers (LMSC) as a repair material. Notably, no prior research has explored the application of LMSC for this purpose. This paper examines the interface bond strength and the type of failure between LMSC as a repair material and the normal concrete (NC) substrate utilising four different surfaces: without surface preparation as a reference (SR), hand hammer (HA), sandblasted (SB), and grooved (GR). The bond strength was measured by bi-surface shear, splitting tensile, and pull-off strength tests at 7, 28, and 90 days. Scanning electron microscopy analysis was also performed to study the microstructure of the interface between the normal concrete substrate and the latex-modified sand concrete reinforced with sisal fibers. The results of this study indicate that LMSC has bonding strength with NC, especially for HR and SB surfaces with high roughness. Therefore, substrate NC surface roughness is essential in increasing the bonding strength and adhesion. Eventually, The LMSC has the potential to repair and rehabilitate concrete structures.

Keywords

Acknowledgement

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/12/17).

References

  1. Aaleti, S. and Sritharan, S. (2019), "Quantifying bonding characteristics between UHPC and normal-strength concrete for bridge deck application", J. Bridge Eng., 24(6), 4019041. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001404
  2. Almesfer, N. and Ingham, J. (2014), "Effect of waste latex paint on concrete", Cement Concrete Compos., 46, 19-25. https://doi.org/10.1016/j.cemconcomp.2013.10.017
  3. Anderson, M.D., Fowler, D.W., SSawant, S., Vipulanandan, C., Ball, J.C., Gaul, R.W., Schmidt, D.A., Vogt, R.W., Bartholomew, J.J., Khan, M.S., Sheng, Q.Z., Wahby, W.S., Bodea, C., Marusin, S.L., Smoak, W.G., Walters, D.G., DePuy, G.W., McElroy, J.A., Solomon, J., Weber, Jr., H.H., Dikeou, J.T., Mendis, P., Southworth, G.L., White, D., Dimmick, Sr., F.E., Milliron, J.R., Sprinkel, M.M., Whitney, D.P., Edwards, H.R., Nemunaitis, B., Stenko, M., Wickett, T., Fallis, G.J., Prusinski, R.C., Tian, B., Yang, P.Y., Farrell, L.J., Reda Taha, M.M., Tragianese, D.P., Zmigrodzki, S. and Fontana, J.J. (2003), "Polymer-Modified Concrete", Reported by ACI Committee 548.
  4. ASTMC39 (2012), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM C39/C39M-12.
  5. ASTMC496 (1996), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
  6. ASTMD4541 (2009), Standard Test Method for Pull-off Strength of Coatings Using Portable Adhesion Testers.
  7. Barluenga, G. and Hernandez-Olivares, F. (2004), "SBR latex modified mortar rheology and mechanical behaviour", Cement Concrete Res., 34(3), 527-535. https://doi.org/10.1016/j.cemconres.2003.09.006
  8. Benaissa, A., Kamen, A., Chouicha, K. and Malab, S. (2008), " Panneau 3D au beton de sable ", Mater. Struct., 41(8), 1377-1391. https://doi.org/10.1617/s11527-007-9336-8
  9. Benali, Y. and Ghomari, F. (2017), "Latex influence on the mechanical behavior and durability of cementitious materials", J. Adhes. Sci. Technol., 31(3), 219-241. https://doi.org/10.1080/01694243.2016.1208378
  10. Bentz, D.P., De la Varga, I., Munoz, J.F., Spragg, R.P., Graybeal, B.A., Hussey, D.S., Jacobson, D.L., Jones, S.Z. and LaManna, J.M. (2018), "Influence of substrate moisture state and roughness on interface microstructure and bond strength: Slant shear vs. pull-off testing", Cement Concrete Compos., 87, 63-72. https://doi.org/10.1016/j.cemconcomp.2017.12.005
  11. Benyahia, A., Ghrici, M., Mansour, M.S. and Omran, A. (2017), "Elaboration and characterization of fiber-reinforced self-consolidating repair mortar containing natural perlite powder", Adv. Concrete Constr., Int. J., 5(1), 1-15. https://doi.org/10.12989/acc.2017.5.1.001
  12. Bonaldo, E., Barros, J.A. and Lourenco, P.B. (2005), "Bond characterization between concrete substrate and repairing SFRC using pull-off testing", Int. J. Adhes. Adhes., 25(6), 463-474. https://doi.org/10.1016/j.ijadhadh.2005.01.002
  13. Cai, J., Pan, J., Li, G. and Elchalakani, M. (2023), "Behaviors of eccentrically loaded ECC-encased CFST columns after fire exposure", Eng. Struct., 289, 116258. https://doi.org/10.1016/j.engstruct.2023.116258
  14. Chynoweth, G., Stankie, R.R., Allen, W.L., Anderson, R.R., Babcock, W.N., Barlow, P., Bartholomew, J.J., Bergemann, G.O., Bullock, R.E. and Constantino, F.J. (1996), "Concrete repair guide", ACI Committee, Concrete Repair Manual, 546, 287-327.
  15. Courard, L., Lenaers, J.F., Michel, F. and Garbacz, A. (2011), "Saturation level of the superficial zone of concrete and adhesion of repair systems", Constr. Build. Mater., 25(5), 2488-2894. https://doi.org/10.1016/j.conbuildmat.2010.11.076
  16. Courard, L., Piotrowski, T. and Garbacz, A. (2014), "Near-to-surface properties affecting bond strength in concrete repair", Cement Concrete Compos., 46, 73-80. https://doi.org/10.1016/j.cemconcomp.2013.11.005
  17. Diab, A.M., Abd Elmoaty, M. and Eldin, M.R.T. (2017), "Slant shear bond strength between self compacting concrete and old concrete", Constr. Build. Mater., 130, 73-82. https://doi.org/10.1016/j.conbuildmat.2016.11.023
  18. Emmons, P.H. and Vaysburd, A.M. (1994), "Factors affecting the durability of concrete repair: the contractor's viewpoint", Constr. Build. Mater., 8(1), 5-16. https://doi.org/10.1016/0950-0618(94)90003-5
  19. Fang, B., Hu, Z., Shi, T., Liu, Y., Wang, X., Yang, D., Zhu, K., Zhao, X. and Zhao, Z. (2022), "Research progress on the properties and applications of magnesium phosphate cement", Ceramics Int., 49(3), 4001-4016. https://doi.org/10.1016/j.ceramint.2022.11.078
  20. Farzad, M., Shafieifar, M. and Azizinamini, A. (2019), "Experimental and numerical study on bond strength between conventional concrete and Ultra High-Performance Concrete (UHPC)", Eng. Struct., 186, 297-305. http://doi.org/10.1016/j.engstruct.2019.02.030
  21. Festa, J. and Dreux, G. (1998), "Nouveau Guide Du Beton et de Ses Constituants [New Guide of Concrete and Its Constituents]", Paris: Edition Eyrolles. 
  22. Gadri, K. and Guettala, A. (2017a), "Evaluation of bond strength between sand concrete as new repair material and ordinary concrete substrate (The surface roughness effect)", Constr. Build. Mater., 157, 1133-1144. http://doi.org/10.1016/j.conbuildmat.2017.09.183
  23. Gadri, K. and Guettala, A. (2017b), "Study of the adaptation of the sand concrete as repair material associated with an ordinary concrete substrate", J. Appl. Eng. Sci. Technol., 3, 13-20. https://doi.org/10.69717/jaest.v3.i1.48
  24. Gao, S., Jin, J., Hu, G. and Qi, L. (2019), "Experimental investigation of the interface bond properties between SHCC and concrete under sulfate attack", Constr. Build. Mater., 217, 651-663. http://doi.org/10.1016/j.conbuildmat.2019.05.121
  25. Garbacz, A., Gorka, M. and Courard, L. (2005), "Effect of concrete surface treatment on adhesion in repair systems", Magaz. Concrete Res., 57(1), 49-60. http://doi.org/10.1680/macr.2005.57.1.49
  26. Garbacz, A., Courard, L. and Kostana, K. (2006), "Characterization of concrete surface roughness and its relation to adhesion in repair systems", Mater. Characteriz., 56(4-5), 281-289. http://doi.org/10.1016/j.matchar.2005.10.014
  27. Gnanasundar, V.M., Palanisamy, T.S., Thirugnanam, G.S. and Preetha, V. (2022), "Mechanical properties of fiber reinforced concrete by using sisal fiber with M-Sand as fine aggregate", Sustain. Mater. Smart Practic.: NCSMSP-2021, 23, 76-82. http://doi.org/10.21741/9781644901953-10
  28. Halicka, A. and Jablonski, L. (2016), "Shear failure mechanism of composite concrete T-shaped beams", Proceedings of the Inst. Civil Engr.-Struct. Build., 169(1), 67-75. https://doi.org/10.1680/stbu.14.00127
  29. Harris, D.K., Sarkar, J. and Ahlborn, T.T.M. (2011), "Characterization of interface bond of ultra-high-performance concrete bridge deck overlays", Transport. Res. Record, 2240(1), 40-49. https://doi.org/10.3141/2240-07
  30. Hassan, K.E., Brooks, J.J. and Al-Alawi, L. (2001), "Compatibility of repair mortars with concrete in a hot-dry environment", Cement Concrete Compos., 23(1), 93-101. https://doi.org/10.1016/S0958-9465(00)00073-1
  31. Hoe Kwan, W., Ramli, M. and Ban Cheah, C. (2015), "Accelerated curing regimes for polymer-modified cement", Magaz. Concrete Res., 67(23), 1233-1241. https://doi.org/10.1680/macr.14.00097
  32. Hola, J., Sadowski, L., Reiner, J. and Stach, S. (2015), "Usefulness of 3D surface roughness parameters for nondestructive evaluation of pull-off adhesion of concrete layers", Constr. Build. Mater., 84, 111-120. https://doi.org/10.1016/j.conbuildmat.2015.03.014
  33. Huang, H., Yuan, Y., Zhang, W. and Zhu, L. (2021), "Property assessment of high-performance concrete containing three types of fibers", Int. J. Concrete Struct. Mater., 15(1), 39. https://doi.org/10.1186/s40069-021-00476-7
  34. Huang, Y., Zhang, W. and Liu, X. (2022), "Assessment of diagonal macrocrack-induced debonding mechanisms in FRP-strengthened RC beams", J. Compos. Constr., 26(5), 4022056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001255
  35. Jaradat, O. (2022a), L'effet de l'incorporation des fibres vegetales sur les proprietes physico-mecaniques des betons de sable modifies au latex destines a la reparation, Faculte des Sciences et de la technologie. http://archives.univ-biskra.dz/handle/123456789/23910
  36. Jaradat, O. (2022b), "Influence of crushed sand on the dynamic modulus of elasticity of sand concrete", J. Phys. Chem. Funct., Mater., 5, 65-68. https://doi.org/10.54565/jphcfum.1070879
  37. Jaradat, O.Z., Gadri, K., Tayeh, B.A. and Guettalaa, A. (2021a), "Influence of sisal fibres and rubber latex on the engineering properties of sand concrete", Struct. Eng. Mech., Int. J., 80(1), 47-62. https://doi.org/10.12989/sem.2021.80.1.047
  38. Jaradat, O., Gadri, K. and Guettala, A. (2021b), "Study the mechanical and physical properties of sand concrete using crushed limestone sand", J. Mater. Electron. Devic., 3(3), 26-29.
  39. Jin, M., Ma, Y., Li, W., Huang, J., Yan, Y., Zeng, H., Lu, C. and Liu, J. (2023), "Multi-scale investigation on composition-structure of C-(A)-S-H with different Al/Si ratios under attack of decalcification action", Cement Concrete Res., 172, 107251. https://doi.org/10.1016/j.cemconres.2023.107251
  40. Jo, Y.K. (2020), "Adhesion in tension of polymer cement mortar by curing conditions using polymer dispersions as cement modifier", Constr. Build. Mater., 242, 118134. https://doi.org/10.1016/j.conbuildmat.2020.118134
  41. Julio, E.N., Branco, F.A. and Silva, V.D. (2004), "Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface", Constr. Build. Mater., 18(9), 675-681. https://doi.org/10.1016/j.conbuildmat.2004.04.023
  42. Khattab, M.M. (2014), "Effect of gamma irradiation on polymer modified white sand cement mortar composites", J. Indust. Eng. Chem., 20(1), 1-8. https://doi.org/10.1016/j.jiec.2013.04.001
  43. Khattab, M., Jaradat, O., Hachemi, S., Suleiman, H. and Benzetta, H. (2023), "Mechanical, physical and environmental performance of sustainable concrete containing marble wastes", Secur. Manage. Modern Civil Eng., 2(2), 1-10. https://doi.org/10.58396/smmce020202
  44. Kim, J.H. and Robertson, R.E. (1997), "Prevention of air void formation in polymer-modified cement mortar by pre-wetting", Cement Concrete Res., 27(2), 171-176. https://doi.org/10.1016/S0008-8846(97)00001-X
  45. Li, D., Nie, J.H., Wang, H., Yan, J.B., Hu, C.X. and Shen, P. (2023), "Damage location, quantification and characterization of steel-concrete composite beams using acoustic emission", Eng. Struct., 283, 115866. https://doi.org/10.1016/j.engstruct.2023.115866
  46. Liu, J., Chen, Z., Guan, D., Lin, Z. and Guo, Z. (2020a), "Experimental study on interfacial shear behaviour between ultra-high performance concrete and normal strength concrete in precast composite members", Constr. Build. Mater., 261, 120008. https://doi.org/10.1016/j.conbuildmat.2020.120008
  47. Liu, Y., Wang, Z., Fan, Z. and Gu, J. (2020b), "Study on properties of sisal fiber modified foamed concrete", In: IOP Conference Series: Materials Science and Engineering, 744(1), p. 012042. https://doi.org/10.1088/1757-899X/744/1/012042
  48. Liu, S., He, Z. and Hu, L. (2022), "Interfacial microstructure between ultrahigh-performance concrete-normal concrete in fresh-on-fresh casting", Constr. Build. Mater., 322, 126476. https://doi.org/10.1016/j.conbuildmat.2022.126476
  49. Mansur, A.A., do Nascimento, O.L. and Mansur, H.S. (2009), "Physico-chemical characterization of EVA-modified mortar and porcelain tiles interfaces", Cement Concrete Res., 39(12), 1199-1208. https://doi.org/10.1016/j.cemconres.2009.07.020
  50. Mansour, R., El Abidine, R.Z. and Brahim, B. (2017), "Performance of polymer concrete incorporating waste marble and alfa fibers", Adv. Concrete Constr., Int. J., 5(4), 331-343. https://doi.org/10.12989/acc.2017.5.4.331
  51. Marthong, C. (2019), "Behavior of repaired RAC beam-column joints using steel welded wire mesh jacketed with cement mortar", Adv. Concrete Constr., Int. J., 8(2), 91-100. https://doi.org/10.12989/acc.2019.8.2.091
  52. Mirza, J., Durand, B., Bhutta, A.R. and Tahir, M.M. (2014), "Preferred test methods to select suitable surface repair materials in severe climates", Constr. Build. Mater., 50, 692-698. https://doi.org/10.1016/j.conbuildmat.2013.10.006
  53. Li, M. and Li, V.C. (2006), "Behavior of ECC/concrete layered repair system under drying shrinkage conditions", Restorat. Build. Monum., 12(2), 143-160. https://doi.org/10.1515/rbm-2006-6040
  54. Momayez, A., Ehsani, M.R., Ramezanianpour, A.A. and Rajaie, H. (2005), "Comparison of methods for evaluating bond strength between concrete substrate and repair materials", Cement Concrete Res., 35(4), 748-757. https://doi.org/10.1016/j.cemconres.2004.05.027
  55. Moodi, F., Norouzi, S. and Dashti, P. (2021), "Mechanical properties and durability of alkali-activated slag repair mortars containing silica fume against freeze-thaw cycles and salt scaling attack", Adv. Concrete Constr., Int. J., 11(6), 493-505. https://doi.org/10.12989/acc.2021.11.6.493
  56. Morgan, D.R. (1996), "Compatibility of concrete repair materials and systems", Constr. Build. Mater., 10(1), 57-67. https://doi.org/10.1016/0950-0618(95)00060-7
  57. Mydin, M.A.O. (2022), "Investigating the effect of sisal fibre content on durability properties of lightweight foamed concrete", Adv. Sci. Technol., Res. J., 16(2). https://doi.org/10.12913/22998624/147065
  58. Naderi, M. and Ghodousian, O. (2012), "Adhesion of self-compacting overlays applied to different concrete substrates and its prediction by fuzzy logic", J. Adhes., 88(10), 848-865. https://doi.org/10.1080/00218464.2012.705673
  59. Nigrawal, A., Sharma, A.K. and Haque, F.Z. (2022), "Influence of surface modification technique on the properties of jute-Sisal fibre filled epoxy composites", Mater. Today: Proceedings, 65, 2578-2580. https://doi.org/10.1016/j.matpr.2022.04.788
  60. Ohama, Y. (1995), Handbook of Polymer-Modified Concrete and Mortars: Properties and Process Technology, William Andrew.
  61. Peng, J., Xu, C., Dai, B., Sun, L., Feng, J. and Huang, Q. (2022), "Numerical investigation of brittleness effect on strength and microcracking behavior of crystalline rock", Int. J. Geomech., 22(10), 4022178. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002529
  62. Perez, F., Bissonnette, B. and Gagne, R. (2009), "Parameters affecting the debonding risk of bonded overlays used on reinforced concrete slab subjected to flexural loading", Mater. Struct./Materiaux et Constr., 42(5), 645-662. https://doi.org/10.1617/s11527-008-9410-x.
  63. Ramli, M., Tabassi, A.A. and Hoe, K.W. (2013), "Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions", Compos. Part B: Eng., 55, 221-233. https://doi.org/10.1016/j.compositesb.2013.06.022
  64. Sabah, S.A., Hassan, M.H., Bunnori, N.M. and Johari, M.M. (2019), "Bond strength of the interface between normal concrete substrate and GUSMRC repair material overlay", Constr. Build. Mater., 216, 261-271. https://doi.org/10.1016/j.conbuildmat.2019.04.270
  65. Santos, P.M. and Julio, E.N. (2007), "Correlation between concrete-to-concrete bond strength and the roughness of the substrate surface", Constr. Build. Mater., 21(8), 1688-1695. https://doi.org/10.1016/j.conbuildmat.2006.05.044
  66. Santos, P.M.D. and Julio, E.N.B.S. (2011), "Factors affecting bond between new and old concrete", ACI Mater. J., 108(4), 449.
  67. Shaker, F.A., El-Dieb, A.S. and Reda, M.M. (1997), "Durability of Styrene-Butadiene latex modified concrete", Cement and Concrete Res., 27(5), 711-720. https://doi.org/10.1016/S0008-8846(97)00055-0
  68. Shi, T., Liu, Y., Hu, Z., Cen, M., Zeng, C., Xu, J. and Zhao, Z. (2022), "Deformation performance and fracture toughness of carbon nanofiber-modified cement-based materials", ACI Mater. J., 119(5), 119-128. https://doi.org/10.14359/51735976
  69. Sikora, P., Lukowski, P., Cendrowski, K., Horszczaruk, E. and Mijowska, E. (2015), "The effect of nanosilica on the mechanical properties of polymer-cement composites (PCC)", Procedia Eng., 108, 139-145. https://doi.org/10.1016/j.proeng.2015.06.129
  70. Sprinkel, M.M. and Ozyildirim, C. (2000), Evaluation of high performance concrete overlays placed on Route 60 over Lynnhaven Inlet in Virginia; Virginia Transportation Research Council, No. VTRC-01-R1.
  71. Standard, B. (2009), Testing hardened concrete, Compressive Strength of Test Specimens, BS EN, pp.12390-3.
  72. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2022), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153
  73. Sundaresan, S., Ramamurthy, V. and Meyappan, N. (2021), "Improving mechanical and durability properties of hypo sludge concrete with basalt fibres and SBR latex", Adv. Concrete Constr., Int. J., 12(4), 327-337. https://doi.org/10.12989/acc.2021.12.4.327
  74. Swift, D.G. and Smith, R.B.L. (1978), Sisal Fibre Reinforcement of Cement Paste and Concrete.
  75. Tayeh, B.A., Bakar, B.A., Johari, M.M. and Voo, Y.L. (2012a), "Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay", Constr. Build. Mater., 36, 538-548. https://doi.org/10.1016/j.conbuildmat.2012.06.013
  76. Tayeh, B.A., Bakar, B.A. and Johari, M.M. (2012b), "Mechanical properties of old concrete-UHPFC interface", In: Concrete Repair, Rehabilitation and Retrofitting III: 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR-3, p. 373, Cape Town, South Africa, September.
  77. Tayeh, B.A., Bakar, B.A., Johari, M.M. and Voo, Y.L. (2013a), "Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation-a review", Procedia Eng., 54, 525-538. https://doi.org/10.1016/j.proeng.2013.03.048
  78. Tayeh, B.A., Abu Bakar, B.H. and Megat Johari, M.A. (2013b), "Characterization of the interfacial bond between old concrete substrate and ultra high performance fiber concrete repair composite", Mater. Struct./Materiaux et Constr., 46(5), 743-753. https://doi.org/10.1617/s11527-012-9931-1
  79. Tayeh, B.A., Bakar, B.A., Johari, M.M. and Voo, Y.L. (2013c), "Evaluation of bond strength between normal concrete substrate and ultra high performance fiber concrete as a repair material", Procedia Eng., 54, 554-563. https://doi.org/10.1016/j.proeng.2013.03.050
  80. Tayeh, B.A., Bakar, B.A., Johari, M.M. and Ratnam, M.M. (2013d), "The relationship between substrate roughness parameters and bond strength of ultra high-performance fiber concrete", J. Adhes. Sci. Technol., 27(16), 1790-1810. https://doi.org/10.1080/01694243.2012.761543
  81. Tayeh, B.A., Abu Bakar, B.H., Megat Johari, M.A. and Zeyad, A.M. (2014), "Microstructural analysis of the adhesion mechanism between old concrete substrate and UHPFC", J. Adhes. Sci. Technol., 28(18), 1846-1864. https://doi.org/10.1080/01694243.2014.925386
  82. Thomas, B.C. and Jose, Y.S. (2022), "A study on characteristics of sisal fiber and its performance in fiber reinforced concrete", Mater. Today: Proceedings, 51, 1238-1242. https://doi.org/10.1016/j.matpr.2021.07.312
  83. Ukrainczyk, N. and Rogina, A. (2013), "Styrene-butadiene latex modified calcium aluminate cement mortar", Cement Concrete Compos., 41, 16-23. https://doi.org/10.1016/j.cemconcomp.2013.04.012
  84. Valikhani, A., Jahromi, A.J., Mantawy, I.M. and Azizinamini, A. (2020), "Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application", Constr. Build. Mater., 238, p. 117753. https://doi.org/10.1016/j.conbuildmat.2019.117753
  85. Wang, Y.S., Peng, K.D., Alrefaei, Y. and Dai, J.G. (2021), "The bond between geopolymer repair mortars and OPC concrete substrate: Strength and microscopic interactions", Cement Concrete Compos., 119, 103991. https://doi.org/10.1016/j.cemconcomp.2021.103991.
  86. Wei, J. and Meyer, C. (2014), "Improving degradation resistance of sisal fiber in concrete through fiber surface treatment", Appl. Surface Sci., 289, 511-523. https://doi.org/10.1016/j.apsusc.2013.11.024
  87. Yang, Z., Shi, X., Creighton, A.T. and Peterson, M.M. (2009), "Effect of styrene-butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar", Constr. Build. Mater., 23(6), 2283-2290. https://doi.org/10.1016/j.conbuildmat.2008.11.011.
  88. Van Zijl, G.P.A.G. and Stander, H. (2008), "SHCC repair overlays for RC: Interfacial bond characterization and modelling", In: Concrete Repair, Rehabilitation and Retrofitting II, CRC Press, pp. 379-380.
  89. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023), "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 106522. https://doi.org/10.1016/j.jobe.2023.106522