DOI QR코드

DOI QR Code

Enhancement of mechanical and durability properties of preplaced lightweight aggregate concrete

  • Bo Peng (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology) ;
  • Jiantao Wang (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology) ;
  • Xianzheng Dong (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology) ;
  • Feihua Yang (Beijing Building Materials Academy of Sciences Research) ;
  • Chuming Sheng (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology) ;
  • Yunpeng Liu (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology)
  • Received : 2022.12.17
  • Accepted : 2023.08.11
  • Published : 2023.06.25

Abstract

In this study, the effect of two types of aggregates (fly ash aggregate and shale aggregate) on the density, strength, and durability of preplaced lightweight aggregate concrete (PLWAC) was studied. The results showed that the 7 - 28 days strength of concrete prepared with fly ash aggregates (high water absorption rate) significantly increased, which could attribute to the long-term water release of fly ash aggregates by the refined pore structure. In contrast, the strength increase of concrete prepared with shale aggregates (low water absorption rate) is not apparent. Although PLWAC prepared with fly ash aggregates has a lower density and higher strength (56.8 MPa @ 1600 kg/m3), the chloride diffusion coefficient is relatively high, which could attribute to the diffusion paths established by connected porous aggregates and the negative over-curing effect. Compared to the control group, the partial replacement of fly ash aggregates (30%) with asphalt emulsion (20% solid content) coated aggregates can reduce the chloride diffusion coefficient of concrete by 53.6% while increasing the peak load obtained in a three-point bending test by 107.3%, fracture energy by 30.3% and characteristic length by 103.5%. The improvement in concrete performance could be attributed to the reduction in the water absorption rate of aggregates and increased energy absorption by polymer during crack propagation.

Keywords

Acknowledgement

The authors would like to thank the financial support from National Key Research Development Program (Grant number No.2021YFC3100800), National Natural Science Foundation of China (Grant number NO. 51972250), and State Key Laboratory of Solid Waste Reuse for Building Materials Open Funding (20191h0592).

References

  1. Abdelgader, H.S. and Elgalhud, A.A. (2008), "Effect of grout proportions on strength of two-stage concrete", Struct. Concrete, 9(3), 163-170. https://doi.org/ 10.1680/stco.2008.9.3.163
  2. Al-Azzawi, A.A. and Shallal, M.S. (2021), "Behavior of reinforced sustainable concrete hollow-core slabs", Adv. Concrete Constr., Int. J., 11(4), 271-294. https://doi.org/10.12989/acc.2021.11.4.271
  3. An, X., Wu, Q., Jin, F., Huang, M., Zhou, H., Chen, C. and Liu, C (2014), "Rock-filled concrete, the new norm of SCC in hydraulic engineering in China", Cement Concrete Compos., 54, 89-99. https://doi.org/10.1016/j.cemconco mp.2014.08. 001
  4. ASTM (2016), Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method), ASTMC939-2016.
  5. Aungatichart, O., Nawaukkaratharnant, N. and Wasanapiarnpong, T. (2022), "The potential use of cold-bonded lightweight aggregate derived from various types of biomass fly ash for preparation of lightweight concrete", Mater. Lett., 327, 133019. https://doi.org/10/grkn5w 10/grkn5w
  6. Bentz, D. and Weiss, W. (2011), "Internal Curing: A 2010 State-of-the-Art Review", Report NISTIR - 7765, National Institute of Standards and Technology.
  7. Bogas, J.A., Carrico, A. and Pontes, J. (2019), "Influence of cracking on the capillary absorption and carbonation of structural lightweight aggregate concrete", Cement Concrete Compos., 104, 103382. https://doi.org/10.1016/j.cemconcomp. 2019.103382
  8. Chia, K.S., Liu, X., Liew, J.Y. and Zhang, M.H. (2014), "Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60 MPa", Struct. Eng. Mech., Int. J., 50(5), 635-652. https://doi.org/10.12989/sem.2014.50.5.635
  9. Chiou, I.J. and Chen, C.H. (2011), "Properties of artificial lightweight aggregates made from waste sludge", Comput. Concrete, Int. J., 8(6), 617-629. https://doi.org/10.12989/cac.2011.8.6.617
  10. Chung, S.Y., Sikora, P., Kim, D.J., El Madawy, M.E. and Abd Elrahman, M. (2021), "Effect of different expanded aggregates on durability-related characteristics of lightweight aggregate concrete", Mater. Characteriz., 173, 110907. https://doi.org/10.1016/j.matchar.2021.110907
  11. Coo, M. and Pheeraphan, T. (2016), "Effect of sand, fly ash and limestone powder on preplaced aggregate concrete mechanical properties and reinforced beam shear capacity", Constr. Build. Mater., 120, 581-592. https://doi.org/10.1016/j.conbuildmat.2016.05.128
  12. Dabbaghi, F., Fallahnejad, H., Nasrollahpour, S., Dehestani, M. and Yousefpour, H. (2021), "Evaluation of fracture energy, toughness, brittleness, and fracture process zone properties for lightweight concrete exposed to high temperatures", Theor. Appl. Fract. Mech., 116, 103088. https://doi.org/10.1016/j.tafmec.2021.103088
  13. Du, Q., Sun, Q., Lv, J. and Yang, J. (2017), "Use of preplaced casting method in lightweight aggregate concrete", Adv. Mater. Sci. Eng., 2017. https://doi.org/7234761. 10.1155/2017/7234761
  14. Gao, Y., Liu, P., Wang, F., Hu, C. and Yang, L. (2022), "Organic-inorganic hybrid phyllosilicate with switchable wettability induced by ultrasonication treatment", Appl. Clay Sci., 229, 106692. https://doi.org/10.1016/j.clay.2022.106692
  15. Haller, T., Beuntner, N., Gutsch, H. and Thienel, K.C. (2023), "Challenges on pumping infra-lightweight concrete based on highly porous aggregates", J. Build. Eng., 65, 105761. https://doi.org/10.1016/j.jobe.2022.105761
  16. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
  17. Jensen, O.M. and Hansen, P.F. (2001), "Water-entrained cement-based materials: I. Principles and theoretical background", Cement Concrete Res., 31(4), 647-654. https://doi.org/10.1016/S0008-8846(01)00463-X
  18. Jensen, O.M. and Hansen, P.F. (2002), "Water-entrained cement-based materials: II. Experimental observations", Cement Concrete Res., 32(6), 973-978. https://doi.org/10.1016/S0008-8846(02)00737-8
  19. Lilja, S., Maage, M., Simon, P., Aassved, H., Wim, B., Helland, S., Norden, G., Erich, K., Aleksandar, M., Sverre, S., Felipe, T., Ivar, H., Bill, P., Breugel, K. and Thienel, C. (1998), LWAC Material Properties - State-of-the-Art.
  20. Liu, Y., Zhu, Z., Wang, F., Hu, S. and He, Y. (2021), "Effects of asphalt modification of paste-aggregate interface on the transport and mechanical properties of concrete", J. Mater. Civil Eng., 33(6). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003743
  21. Lo, Y., Gao, X.F. and Jeary, A.P. (1999), "Microstructure of pre-wetted aggregate on lightweight concrete", Build. Environ., 34(6), 759-764. https://doi.org/10.1016/S0360-1323(98)00060-2
  22. Long, G., Yang, J. and Xie, Y. (2017), "The mechanical characteristics of steam-cured high strength concrete incorporating with lightweight aggregate", Constr. Build. Mater., 136, 456-464. https://doi.org/10.1016/j.conbuildmat.2016.12.171
  23. Morin, V., Moevus, M., Dubois-Brugger, I. and Gartner, E. (2011), "Effect of polymer modification of the paste-aggregate interface on the mechanical properties of concretes", Cement Concrete Res., 41(5), 459-466. https://doi.org/10.1016/j.cemconres.2011.01.006
  24. Najjar, M.F., Soliman, A.M. and Nehdi, M.L. (2014), "Critical overview of two-stage concrete: Properties and applications", Constr. Build. Mater., 62, 47-58. https://doi.org/10.1016/j.conbuildmat.2014.03.021
  25. Nie, S., Hu, S., Wang, F., Yuan, P., Zhu, Y., Ye, J. and Liu, Y. (2016), "Internal curing - A suitable method for improving the performance of heat-cured concrete", Constr. Build. Mater., 122, 294-301. https://doi.org/10.1016/j.conbuildmat.2016.05.159
  26. Nie, S., Zhang, W., Hu, S., Liu, Z. and Wang, F. (2018), "Improving the fluid transport properties of heat-cured concrete by internal curing", Constr. Build. Mater., 168, 522-531. https://doi.org/10.1016/j.conbuildmat.2018.02.068
  27. Real, S., Bogas, J.A. and Pontes, J. (2021), "Structural lightweight aggregate concrete exposed to marine environment for 5 years", Constr. Build. Mater., 275, 122161. https://doi.org/10.1016/j.conbuildmat.2020.122161
  28. Revilla-Cuesta, V., Fiol, F., Perumal, P., Ortega-Lopez, V. and Manso, J.M. (2022), "Using recycled aggregate concrete at a precast-concrete plant: A multi-criteria company-oriented feasibility study", J. Cleaner Prod., 373, 133873. https://doi.org/10.1016/j.jclepro.2022.133873
  29. Rustamov, S., Kim, S., Kwon, M. and Kim, J. (2021), "Effects of fiber types and volume fraction on strength of lightweight concrete containing expanded clay", Adv. Concrete Constr., Int. J., 12(1), 47-55. https://doi.org/10.12989/acc.2021.12.1.047
  30. Shoaei, P., Zolfaghary, S., Jafari, N., Dehestani, M. and Hejazi, M. (2017), "Investigation of adding cement kiln dust (CKD) in ordinary and lightweight concrete", Adv. Concrete Constr., Int. J., 5(2), 101-115. https://doi.org/10.12989/acc.2017.5.2.101
  31. Siddique, S., Kim, H., Son, H. and Jang, J.G. (2021), "Characteristics of preplaced aggregate concrete fabricated with alkali-activated slag/fly ash cements", Materials, 14(3). https://doi.org/10.3390/ma14030591
  32. Tang, C.-W. (2017), "Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete", Comput. Concrete, Int. J., 19(1), 69-78. https://doi.org/10.12989/cac.2017.19.1.069
  33. Vakhshouri, B. and Nejadi, S. (2017), "Compressive strength and mixture proportions of self-compacting light weight concrete", Comput. Concrete, Int. J., 19(5), 555-566. https://doi.org/10.12989/cac.2017.19.5.555
  34. Vali, K.S. and Murugan, S.B. (2020), "Effect of different binders on cold-bonded artificial lightweight aggregate properties", Adv. Concrete Constr., Int. J., 9(2), 183-193. https://doi.org/10.12989/acc.2020.9.2.183
  35. Yang, Y., Chen, Y., Yang, Y. and Zeng, S. (2019), "Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab", Steel Compos. Struct., Int. J., 31(4), 329-340. https://doi.org/10.12989/scs.2019.31.4.329
  36. Yew, M.K., Beh, J.H., Yew, M.C., Lee, F.W., Saw, L.H. and Lim, S.K. (2022), "Performance of surface modification on bio-based aggregate for high strength lightweight concrete", Case Stud. Constr. Mater., 16, e00910. https://doi.org/10.1016/j.cscm.2022.e00910
  37. Yoon, J.Y. and Kim, J.H. (2019), "Mechanical properties of preplaced lightweight aggregates concrete", Constr. Build. Mater., 216, 440-449. https://doi.org/10.1016/j.conbuildmat.2019.05.010
  38. Yoon, J.Y., Kim, J.H., Hwang, Y.Y. and Shin, D.K. (2015), "Lightweight concrete produced using a two-stage casting process", Mater., 8(4), 1384-1397. https://doi.org/10.3390/ma8041384
  39. Yoon, J.Y., Lee, J.Y. and Kim, J.H. (2019), "Use of raw-state bottom ash for aggregates in construction materials", J. Mater. Cycl. Waste Manage., 21(4), 838-849. https://doi.org/10.1007/s10163-019-00841-5
  40. Yoon, J., Kim, H., Shin, S.W. and Sim, S.H. (2020), "Rheology-based determination of injectable grout fluidity for preplaced aggregate concrete using ultrasonic tomography", Constr. Build. Mater., 260, 120447. https://doi.org/10.1016/j.conbuildmat.2020.120447