Acknowledgement
The authors would like to thank the financial support from National Key Research Development Program (Grant number No.2021YFC3100800), National Natural Science Foundation of China (Grant number NO. 51972250), and State Key Laboratory of Solid Waste Reuse for Building Materials Open Funding (20191h0592).
References
- Abdelgader, H.S. and Elgalhud, A.A. (2008), "Effect of grout proportions on strength of two-stage concrete", Struct. Concrete, 9(3), 163-170. https://doi.org/ 10.1680/stco.2008.9.3.163
- Al-Azzawi, A.A. and Shallal, M.S. (2021), "Behavior of reinforced sustainable concrete hollow-core slabs", Adv. Concrete Constr., Int. J., 11(4), 271-294. https://doi.org/10.12989/acc.2021.11.4.271
- An, X., Wu, Q., Jin, F., Huang, M., Zhou, H., Chen, C. and Liu, C (2014), "Rock-filled concrete, the new norm of SCC in hydraulic engineering in China", Cement Concrete Compos., 54, 89-99. https://doi.org/10.1016/j.cemconco mp.2014.08. 001
- ASTM (2016), Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method), ASTMC939-2016.
- Aungatichart, O., Nawaukkaratharnant, N. and Wasanapiarnpong, T. (2022), "The potential use of cold-bonded lightweight aggregate derived from various types of biomass fly ash for preparation of lightweight concrete", Mater. Lett., 327, 133019. https://doi.org/10/grkn5w 10/grkn5w
- Bentz, D. and Weiss, W. (2011), "Internal Curing: A 2010 State-of-the-Art Review", Report NISTIR - 7765, National Institute of Standards and Technology.
- Bogas, J.A., Carrico, A. and Pontes, J. (2019), "Influence of cracking on the capillary absorption and carbonation of structural lightweight aggregate concrete", Cement Concrete Compos., 104, 103382. https://doi.org/10.1016/j.cemconcomp. 2019.103382
- Chia, K.S., Liu, X., Liew, J.Y. and Zhang, M.H. (2014), "Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60 MPa", Struct. Eng. Mech., Int. J., 50(5), 635-652. https://doi.org/10.12989/sem.2014.50.5.635
- Chiou, I.J. and Chen, C.H. (2011), "Properties of artificial lightweight aggregates made from waste sludge", Comput. Concrete, Int. J., 8(6), 617-629. https://doi.org/10.12989/cac.2011.8.6.617
- Chung, S.Y., Sikora, P., Kim, D.J., El Madawy, M.E. and Abd Elrahman, M. (2021), "Effect of different expanded aggregates on durability-related characteristics of lightweight aggregate concrete", Mater. Characteriz., 173, 110907. https://doi.org/10.1016/j.matchar.2021.110907
- Coo, M. and Pheeraphan, T. (2016), "Effect of sand, fly ash and limestone powder on preplaced aggregate concrete mechanical properties and reinforced beam shear capacity", Constr. Build. Mater., 120, 581-592. https://doi.org/10.1016/j.conbuildmat.2016.05.128
- Dabbaghi, F., Fallahnejad, H., Nasrollahpour, S., Dehestani, M. and Yousefpour, H. (2021), "Evaluation of fracture energy, toughness, brittleness, and fracture process zone properties for lightweight concrete exposed to high temperatures", Theor. Appl. Fract. Mech., 116, 103088. https://doi.org/10.1016/j.tafmec.2021.103088
- Du, Q., Sun, Q., Lv, J. and Yang, J. (2017), "Use of preplaced casting method in lightweight aggregate concrete", Adv. Mater. Sci. Eng., 2017. https://doi.org/7234761. 10.1155/2017/7234761
- Gao, Y., Liu, P., Wang, F., Hu, C. and Yang, L. (2022), "Organic-inorganic hybrid phyllosilicate with switchable wettability induced by ultrasonication treatment", Appl. Clay Sci., 229, 106692. https://doi.org/10.1016/j.clay.2022.106692
- Haller, T., Beuntner, N., Gutsch, H. and Thienel, K.C. (2023), "Challenges on pumping infra-lightweight concrete based on highly porous aggregates", J. Build. Eng., 65, 105761. https://doi.org/10.1016/j.jobe.2022.105761
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
- Jensen, O.M. and Hansen, P.F. (2001), "Water-entrained cement-based materials: I. Principles and theoretical background", Cement Concrete Res., 31(4), 647-654. https://doi.org/10.1016/S0008-8846(01)00463-X
- Jensen, O.M. and Hansen, P.F. (2002), "Water-entrained cement-based materials: II. Experimental observations", Cement Concrete Res., 32(6), 973-978. https://doi.org/10.1016/S0008-8846(02)00737-8
- Lilja, S., Maage, M., Simon, P., Aassved, H., Wim, B., Helland, S., Norden, G., Erich, K., Aleksandar, M., Sverre, S., Felipe, T., Ivar, H., Bill, P., Breugel, K. and Thienel, C. (1998), LWAC Material Properties - State-of-the-Art.
- Liu, Y., Zhu, Z., Wang, F., Hu, S. and He, Y. (2021), "Effects of asphalt modification of paste-aggregate interface on the transport and mechanical properties of concrete", J. Mater. Civil Eng., 33(6). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003743
- Lo, Y., Gao, X.F. and Jeary, A.P. (1999), "Microstructure of pre-wetted aggregate on lightweight concrete", Build. Environ., 34(6), 759-764. https://doi.org/10.1016/S0360-1323(98)00060-2
- Long, G., Yang, J. and Xie, Y. (2017), "The mechanical characteristics of steam-cured high strength concrete incorporating with lightweight aggregate", Constr. Build. Mater., 136, 456-464. https://doi.org/10.1016/j.conbuildmat.2016.12.171
- Morin, V., Moevus, M., Dubois-Brugger, I. and Gartner, E. (2011), "Effect of polymer modification of the paste-aggregate interface on the mechanical properties of concretes", Cement Concrete Res., 41(5), 459-466. https://doi.org/10.1016/j.cemconres.2011.01.006
- Najjar, M.F., Soliman, A.M. and Nehdi, M.L. (2014), "Critical overview of two-stage concrete: Properties and applications", Constr. Build. Mater., 62, 47-58. https://doi.org/10.1016/j.conbuildmat.2014.03.021
- Nie, S., Hu, S., Wang, F., Yuan, P., Zhu, Y., Ye, J. and Liu, Y. (2016), "Internal curing - A suitable method for improving the performance of heat-cured concrete", Constr. Build. Mater., 122, 294-301. https://doi.org/10.1016/j.conbuildmat.2016.05.159
- Nie, S., Zhang, W., Hu, S., Liu, Z. and Wang, F. (2018), "Improving the fluid transport properties of heat-cured concrete by internal curing", Constr. Build. Mater., 168, 522-531. https://doi.org/10.1016/j.conbuildmat.2018.02.068
- Real, S., Bogas, J.A. and Pontes, J. (2021), "Structural lightweight aggregate concrete exposed to marine environment for 5 years", Constr. Build. Mater., 275, 122161. https://doi.org/10.1016/j.conbuildmat.2020.122161
- Revilla-Cuesta, V., Fiol, F., Perumal, P., Ortega-Lopez, V. and Manso, J.M. (2022), "Using recycled aggregate concrete at a precast-concrete plant: A multi-criteria company-oriented feasibility study", J. Cleaner Prod., 373, 133873. https://doi.org/10.1016/j.jclepro.2022.133873
- Rustamov, S., Kim, S., Kwon, M. and Kim, J. (2021), "Effects of fiber types and volume fraction on strength of lightweight concrete containing expanded clay", Adv. Concrete Constr., Int. J., 12(1), 47-55. https://doi.org/10.12989/acc.2021.12.1.047
- Shoaei, P., Zolfaghary, S., Jafari, N., Dehestani, M. and Hejazi, M. (2017), "Investigation of adding cement kiln dust (CKD) in ordinary and lightweight concrete", Adv. Concrete Constr., Int. J., 5(2), 101-115. https://doi.org/10.12989/acc.2017.5.2.101
- Siddique, S., Kim, H., Son, H. and Jang, J.G. (2021), "Characteristics of preplaced aggregate concrete fabricated with alkali-activated slag/fly ash cements", Materials, 14(3). https://doi.org/10.3390/ma14030591
- Tang, C.-W. (2017), "Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete", Comput. Concrete, Int. J., 19(1), 69-78. https://doi.org/10.12989/cac.2017.19.1.069
- Vakhshouri, B. and Nejadi, S. (2017), "Compressive strength and mixture proportions of self-compacting light weight concrete", Comput. Concrete, Int. J., 19(5), 555-566. https://doi.org/10.12989/cac.2017.19.5.555
- Vali, K.S. and Murugan, S.B. (2020), "Effect of different binders on cold-bonded artificial lightweight aggregate properties", Adv. Concrete Constr., Int. J., 9(2), 183-193. https://doi.org/10.12989/acc.2020.9.2.183
- Yang, Y., Chen, Y., Yang, Y. and Zeng, S. (2019), "Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab", Steel Compos. Struct., Int. J., 31(4), 329-340. https://doi.org/10.12989/scs.2019.31.4.329
- Yew, M.K., Beh, J.H., Yew, M.C., Lee, F.W., Saw, L.H. and Lim, S.K. (2022), "Performance of surface modification on bio-based aggregate for high strength lightweight concrete", Case Stud. Constr. Mater., 16, e00910. https://doi.org/10.1016/j.cscm.2022.e00910
- Yoon, J.Y. and Kim, J.H. (2019), "Mechanical properties of preplaced lightweight aggregates concrete", Constr. Build. Mater., 216, 440-449. https://doi.org/10.1016/j.conbuildmat.2019.05.010
- Yoon, J.Y., Kim, J.H., Hwang, Y.Y. and Shin, D.K. (2015), "Lightweight concrete produced using a two-stage casting process", Mater., 8(4), 1384-1397. https://doi.org/10.3390/ma8041384
- Yoon, J.Y., Lee, J.Y. and Kim, J.H. (2019), "Use of raw-state bottom ash for aggregates in construction materials", J. Mater. Cycl. Waste Manage., 21(4), 838-849. https://doi.org/10.1007/s10163-019-00841-5
- Yoon, J., Kim, H., Shin, S.W. and Sim, S.H. (2020), "Rheology-based determination of injectable grout fluidity for preplaced aggregate concrete using ultrasonic tomography", Constr. Build. Mater., 260, 120447. https://doi.org/10.1016/j.conbuildmat.2020.120447