DOI QR코드

DOI QR Code

Genome-wide single-nucleotide polymorphism data and mitochondrial hypervariable region 1 nucleotide sequence reveal the origin of the Akhal-Teke horse

  • Zhoucairang Kang (College of Animal Science and Technology, Gansu Agricultural University) ;
  • Jinping Shi (College of Animal Science and Technology, Gansu Agricultural University) ;
  • Ting Liu (College of Animal Science and Technology, Gansu Agricultural University) ;
  • Yong Zhang (College of Veterinary Medicine, Gansu Agricultural University) ;
  • Quanwei Zhang (College of Life Science and Biotechnology, Gansu Agricultural University) ;
  • Zhe Liu (College of Animal Science and Technology, Gansu Agricultural University) ;
  • Jianfu Wang (College of Animal Science and Technology, Gansu Agricultural University) ;
  • Shuru Cheng (College of Animal Science and Technology, Gansu Agricultural University)
  • Received : 2023.02.08
  • Accepted : 2023.04.10
  • Published : 2023.10.01

Abstract

Objective: The study investigated the origin of the Akhal-Teke horse using genome-wide single-nucleotide polymorphism (SNP) data and mitochondrial hypervariable region 1 (HVR-1) nucleotide sequences Methods: Genome-wide SNP data from 22 breeds (481 horses) and mitochondrial HVR-1 sequences from 24 breeds (544 sequences) worldwide to examine the origin of the Akhal-Teke horse. The data were analyzed using principal component analysis, linkage disequilibrium analysis, neighbor-joining dendrograms, and ancestry inference to determine the population relationships, ancestral source, genetic structure, and relationships with other varieties. Results: A close genetic relationship between the Akhal-Teke horse and horses from the Middle East was found. Analysis of mitochondrial HVR-1 sequences showed that there were no shared haplotypes between the Akhal-Teke and Tarpan horses, and the mitochondrial data indicated that the Akhal-Teke horse has not historically expanded its group. Ancestral inference suggested that Arabian and Caspian horses were the likely ancestors of the Akhal-Teke horse. Conclusion: The Akhal-Teke horse originated in the Middle East.

Keywords

Acknowledgement

This research was supported by grants from the Special Aquaculture Project of Agriculture and Pastoral Department of Gansu Province, China (GARS-TSYZ-2-1). Discipline Team Project of Gansu Agricultural University (GAU-XKTD-2022-22).

References

  1. Li B, He X, Zhao Y, et al. Analysis of the miRNA transcriptome during testicular development and spermatogenesis of the Mongolian horse. Reprod Fertil Dev 2020;32:582-593. https://doi.org/10.1071/RD19133
  2. Cozzi MC, Strillacci MG, Valiati P, Rogliano E, Bagnato A, Longeri M. Genetic variability of Akhal-Teke horses bred in Italy. PeerJ 2018;6:e4889. https://doi.org/10.7717/peerj.4889
  3. Librado P, Gamba C, Gaunitz C, et al. Ancient genomic changes associated with domestication of the horse. Science 2017;356:442-5. https://doi.org/10.1126/science.aam5298
  4. Cozzi MC, Strillacci MG, Valiati P, Bighignoli B, Cancedda M, Zanotti M. Mitochondrial D-loop sequence variation among Italian horse breeds. Genet Sel Evol 2004;36:663. https://doi.org/10.1186/1297-9686-36-6-663
  5. Leisson K, Alev K, Kaasik P, Jaakma u, Seene T. Myosin heavy chain pattern in the Akhal-Teke horses. Animal 2011;5:658-62. https://doi.org/10.1017/S1751731110002375
  6. Cothran EG, Dyk E, Merwe FJ. Genetic variation in the feral horses of the Namib Desert, Namibia. J S Afr Vet Assoc 2001;72:18-22. https://doi.org/10.4102/jsava.v72i1.603
  7. Achilli A, Olivieri A, Soares P, Torroni A. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. Proc Natl Acad Sci USA 2012;109:2449-54. https://doi.org/10.1073/pnas.1111637109
  8. Luis C, Juras R, Oom MM, Cothran EG. Genetic diversity and relationships of Portuguese and other horse breeds based on protein and microsatellite loci variation. Anim Genet 2007;38:20-7. https://doi.org/10.1111/j.1365-2052.2006.01545.x
  9. Bomcke E, Gengler N, Cothran EG. Genetic variability in the Skyros pony and its relationship with other Greek and foreign horse breeds. Genet Mol Biol 2011;34:68-76. https://doi.org/10.1590/S1415-47572010005000113
  10. Priskin K, Szabo K, Tomory G, et al. Mitochondrial sequence variation in ancient horses from the Carpathian Basin and possible modern relatives. Genetica 2010;138:211-8. https://doi.org/10.1007/s10709-009-9411-x
  11. Giulotto E, Raimondi E, Sullivan KF, et al.The unique DNA sequences underlying equine centromeres. Prog Mol Subcell Biol 2017;56:337-354. https://doi.org/10.1007/978-3-319-58592-5_14
  12. Atsenova N, Palova N, Mehandjyiski I, Neov B, Radoslavov G, Hristov P. The sequence analysis of mitochondrial dna revealed some major centers of horse domestications: the archaeologist's cut. J Equine Vet Sci 2022;109:103830. https://doi.org/10.1016/j.jevs.2021.103830
  13. Ma H, Wu Y, Xiang H, et al. Some maternal lineages of domestic horses may have origins in East Asia revealed with further evidence of mitochondrial genomes and HVR-1 sequences. PeerJ 2018;6:e4896. https://doi.org/10.7717/peerj.4896
  14. Petersen JL, Mickelson JR, Cothran EG, et al. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS One 2013;8:e54997. https://doi.org/10.1371/journal.pone.0054997
  15. Almarzook S, Reissmann M, Arends D, Brockmann GA. Genetic diversity of Syrian Arabian horses. Anim Genet 2017;48:486-9. https://doi.org/10.1111/age.12568
  16. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75. https://doi.org/10.1086/519795
  17. Zhang C, Dong SS, Xu JY, He WM, Yang TL. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019;35:1786-8. https://doi.org/10.1093/bioinformatics/bty875
  18. Ma H, Wang S, Zeng G, et al. The origin of a coastal indigenous horse breed in china revealed by genome-wide SNP data. Genes 2019;10:241. https://doi.org/10.3390/genes10030241
  19. Ablondi M, Dadousis C, Vasini M, Eriksson S, Mikko S, Sabbioni A. Genetic diversity and signatures of selection in a Native Italian horse breed based on SNP data. Animals (Basel) 2020;10:1005. https://doi.org/10.3390/ani10061005
  20. Petr M, Vernot B, Kelso J. admixr-R package for reproducible analyses using ADMIXTOOLS. Bioinformatics 2019;35:3194-5. https://doi.org/10.1093/bioinformatics/btz030
  21. Loh PR, Lipson M, Patterson N, et al. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 2013;193:1233-54. https://doi.org/10.1534/genetics.112.147330
  22. Bertholet J, Anastasi G, Noble D, et al. Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part II: Offline and online plan adaption for interfractional changes. Radiother Oncol 2020;153:88-96. https://doi.org/10.1016/j.radonc.2020.06.017
  23. Lau AN, Peng L, Goto H, Chemnick L, Ryder OA, Makova KD. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences. Mol Biol Evol 2009;26:199-208. https://doi.org/10.1093/molbev/msn239
  24. Warmuth V, Eriksson A, Bower MA, et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc Natl Acad Sci USA 2012;109:8202-6. https://doi.org/10.1073/pnas.1111122109
  25. Rahimi-Mianji G, Nejati-Javaremi A, Farhadi A. Genetic diversity, parentage verification and genetic bottlenecks evaluation in Iranian Turkmen horse breed. Genetika 2015;51:1066-74. https://doi.org/10.7868/s0016675815090088
  26. Orlando L. Ancient genomes reveal unexpected horse domestication and management dynamics. Bioessays 2020;42:19400164. https://doi.org/10.1002/bies.201900164
  27. Kusliy MA, Vorobieva NV, Tishkin AA, et al. Traces of late bronze and early iron age mongolian horse mitochondrial lineages in modern populations. Genes (Basel) 2021;12:412. https://doi.org/10.3390/genes12030412
  28. Yang L, Kong X, Yang S, et al. Haplotype diversity in mitochondrial DNA reveals the multiple origins of Tibetan horse. PLoS One 2018;13:e0201564. https://doi.org/10.1371/journal.pone.0201564
  29. Lippold S, Matzke NJ, Reissmann M, Hofreiter M. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication. BMC Evol Biol 2011;11:328. https://doi.org/10.1186/1471-2148-11-328
  30. Csizmar N, Mihok S, Javor A, Kusza S. Genetic analysis of the Hungarian draft horse population using partial mitochondrial DNA D-loop sequencing. PeerJ 2018;6:e4198. https://doi.org/10.7717/peerj.4198