DOI QR코드

DOI QR Code

The effect of heaving motion of multiple wave energy converters installed on a floating platform on global performance

  • Dongeun Kim (Multidisciplinary Graduate School Program for Wind Energy, Jeju National University) ;
  • Yeonbin Lee (Department of Mechanical Engineering, Hongik University) ;
  • Yoon Hyeok Bae (Department of Mechanical & System Design Engineering, Hongik University)
  • Received : 2022.10.23
  • Accepted : 2023.04.08
  • Published : 2023.12.25

Abstract

Targeting a floating wave and offshore wind hybrid power generation system (FWWHybrid) designed in the Republic of Korea, this study examines the impact of the interaction, with multiple wave energy converters (WECs) placed on the platform, on platform motion. To investigate how the motion of WECs affects the behavior of the FWWHybrid platform, it was numerically compared with a scenario involving a 'single-body' system, where multiple WECs are constrained to the platform. In the case of FWWHybrid, because the platform and multiple WECs move in response to waves simultaneously as a 'multi-body' system, hydrodynamic interactions between these entities come into play. Additionally, the power take-off (PTO) mechanism between the platform and individual WECs is introduced for power production. First, the hydrostatic/dynamic coefficients required for numerical analysis were calculated in the frequency domain and then used in the time domain analysis. These simulations are performed using the extended HARP/CHARM3D code developed from previous studies. By conducting regular wave simulations, the response amplitude operator (RAO) for the platform of both single-body and multi-body scenarios was derived and subsequently compared. Next, to ascertain the difference in response in the real sea environment, this study also includes an analysis of irregular waves. As the floating body maintains its position through connection to a catenary mooring line, the impact of the slowly varying wave drift load cannot be disregarded. To assess the influence of the 2nd-order wave exciting load, irregular wave simulations were conducted, dividing them into cases where it was not considered and cases where it was included. The analysis of multi-degree-of-freedom behavior confirmed that the action of multiple WECs had a substantial impact on the platform's response.

Keywords

Acknowledgement

This work was supported by 2023 Hongik University Research Fund.

References

  1. Bae, Y.H. and Lee, H. (2016), "Transient effects of wind-wave hybrid platform in mooring line broken condition", J. Korean Soc. Mar. Environ. Energy, 19(2), 129-136. https://doi.org/10.7846/JKOSMEE.2016.19.2.129.
  2. Bae, Y.H. and Lee, H. (2017), "Multi-DOF time-domain analysis of wind-wave hybrid power generation platform", J. Korean Soc. Mar. Environ. Energy, 20(3), 127-135. https://doi.org/10.7846/JKOSMEE.2017.20.3.127.
  3. Barthelmie, R.J., Hansen, K., Frandsen, S.T., Rathmann, O., Schepers, J.G., Schlez, W., Phillips, J., Rados K., Zervos A., Politis E.S. and Chaviaropoulos P.K. (2009), "Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore", Wind Energy: Int. J. Progress Appl. Wind Power Conversion Technol., 12(5), 431-444. https://doi.org/10.1002/we.348.
  4. Butterfield, S., Musial, W., Jonkman, J. and Sclavounos, P. (2007), "Engineering challenges for floating offshore wind turbines", National Renewable Energy Lab.(NREL), USA.
  5. Chiapponi, L., Addona, F., Diaz-Carrasco, P., Losada, M.A. and Longo, S. (2020), "Statistical analysis of the interaction between wind-waves and currents during early wave generation", Coast. Eng., 159, 103672. https://doi.org/10.1016/j.coastaleng.2020.103672.
  6. Cho, I.H. and Choi, J.Y. (2014), "Design of wave energy extractor with a linear electric generator-part II. linear generator", J. Korean Soc. Mar. Environ. Energy, 17(3), 174-181. https://doi.org/10.7846/JKOSMEE.2014.17.3.174.
  7. Cummins, W.E. (1962), "The impulse response function and ship motions", David Taylor Model Basin Washington DC.
  8. Emami, A. and Pirooz, A. (2010), "New approach on optimization in placement of wind turbines within wind farm by genetic algorithms", Renew. Energy, 35(7), 1559-1564. https://doi.org/10.1016/j.renene.2009.11.026.
  9. Faltinsen, O. (1993), Sea Loads on Ships and Offshore Structures, (1st Ed.), Cambridge university press, Cambridge, UK.
  10. Floating Power Plant A/S (2015), Poseidon Floating Power (Poseidon 37), Pacific Northwest National Laboratory; WA, USA. https://tethys.pnnl.gov/project-sites/poseidon-floating-power-poseidon-37.
  11. Ghafari, H.R., Ghassemi, H. and Guanghua, H. (2021), "Numerical study of the Wavestar wave energy converter with multi-point-absorber around DeepCwind semisubmersible floating platform", Ocean Eng., 232, 109177. https://doi.org/10.1016/j.oceaneng.2021.109177.
  12. Green Ocean Energy Wave Treader Project (2010), The Green Ocean Energy Wave Treader Project, Power Technology; NY, USA. https://www.power-technology.com/projects/greenoceanenergywav/
  13. Hallak, T.S., Gaspar, J.F., Kamarlouei, M., Calvario, M., Mendes, M.J., Thiebaut, F. and Guedes Soares, C. (2018), "Numerical and experimental analysis of a hybrid wind-wave offshore floating platform's hull", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Madrid, Spain, June. https://doi.org/10.1115/OMAE2018-78744.
  14. Hanley, K.E., Belcher, S.E. and Sullivan, P.P. (2010), "A global climatology of wind-wave interaction". J. Phys. Oceanography, 40(6), 1263-1282. https://doi.org/10.1175/2010JPO4377.1.
  15. Hanssen, J.E., Margheritini, L., O'Sullivan, K., Mayorga, P., Martinez, I., Arriaga, A., Agos, I., Steynor, J., Ingram, D., Hezari, R. and Todalshaug, J.H. (2015), "Design and performance validation of a hybrid offshore renewable energy platform", Proceedings of the 2015 10th International Conference on Ecological Vehicles and Renewable Energies, Monte Carlo, Monaco, April. https://doi.org/10.1109/EVER.2015.7113017.
  16. Jang, H.K., Park, S., Kim, M.H., Kim, K.H. and Hong, K. (2019), "Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine", Renew. Energ., 134, 526-537. https://doi.org/10.1016/j.renene.2018.11.033.
  17. Journee, J.M.J. and Massie, W.W. (2001), Offshore hydromechanics. Delft University of Technology. https://doi.org/10.1016/j.renene.2020.01.078
  18. Kamarlouei, M., Gaspar, J.F., Calvario, M., Hallak, T.S., Mendes, M.J., Thiebaut, F. and Soares, C.G. (2020), "Experimental analysis of wave energy converters concentrically attached on a floating offshore platform", Renew. Energ., 152, 1171-1185. https://doi.org/10.1016/j.renene.2020.01.078.
  19. Karimirad, M. (2014), Offshore energy structures: for wind power, wave energy and hybrid marine platforms, Springer.
  20. Kim, D. and Bae, Y.H. (2019), "Time domain analysis of optimal arrangement of wave energy converters placed on a floating llatform", J. Korean Soc. Mar. Environ. Energy, 22(3), 125-132. https://doi.org/10.7846/JKOSMEE.2019.22.3.125.
  21. Kim, D., Poguluri, S.K. and Bae, Y.H. (2020) "Numerical study on linear behavior of arrayed pitch motion wave energy converter", J. Korean Soc. Mar. Environ. Energy, 23(4), 269-276. https://doi.org/10.7846/JKOSMEE.2020.23.4.269.
  22. Kim, K.H., Lee, K., Sohn, J.M., Park, S., Choi, J.S. and Hong, K. (2015), "Conceptual design of large semisubmersible platform for wave-offshore wind hybrid power generation", J. Korean Soc. Mar. Environ. Energy, 18(3), 223-232. https://doi.org/10.7846/JKOSMEE.2015.18.3.223.
  23. Kim, K.H., Hong, J.P., Park, S., Lee, K. and Hong, K. (2016), "An experimental study on dynamic performance of large floating wave-offshore hybrid power generation platform in extreme conditions", J. Korean Soc. Mar. Environ. Energy, 19(1), 7-17. https://doi.org/10.7846/JKOSMEE.2016.19.1.7.
  24. Kim, M.H., Ran, Z. and Zheng, W. (2001), "Hull/mooring coupled dynamic analysis of a truss spar in time domain", Int. J. Offshore and Polar Eng., 11(1), 42-54.
  25. Lee, C.H. and Newman, J.N. (1991) "First- and second-order wave effects on a submerged spheroid", J. Ship Res., 35(03), 183-190. https://doi.org/10.5957/jsr.1991.35.3.183.
  26. Lee, H., Cho, I.H., Kim, K.H. and Hong, K. (2016), "Interaction analysis on deployment of multiple wave energy converters in a floating hybrid power generation platform", J. Korean Soc. Mar. Environ. Energy, 19(3), 185-193. https://doi.org/10.7846/JKOSMEE.2016.19.3.185.
  27. Lee, H., Bae, Y.H., Kim, D., Park, S., Kim, K.H. and Hong, K. (2018a), "Study on Optimal Damping Model of Very Large Offshore Semi-submersible Structure", J. Ocean Eng. Technol., 32(1), 1-8. https://doi.org/10.26748/KSOE.2018.2.32.1.001.
  28. Lee, H., Poguluri, S.K. and Bae, Y.H. (2018b), "Performance analysis of multiple wave energy converters placed on a floating platform in the frequency domain", Energies, 11(2), 406. https://doi.org/10.3390/en11020406.
  29. Legaz, M.J., Coronil, D., Mayorga, P. and Fernandez, J. (2018), "Study of a hybrid renewable energy platform: W2Power", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Madrid, Spain, June. https://doi.org/10.1115/OMAE2018-77690.
  30. Marmidis, G., Lazarou, S. and Pyrgioti, E (2008), "Optimal placement of wind turbines in a wind park using Monte Carlo simulation", Renew. Energ., 33(7), 1455-1460. https://doi.org/10.1016/j.renene.2007.09.004.
  31. Mavrakos, S.A (1991), "Hydrodynamic coefficients for groups of interacting vertical axisymmetric bodies", Ocean Eng., 18(5), 485-515. https://doi.org/10.1016/0029-8018(91)90027-N.
  32. McIver, P (1984), "Wave forces on arrays of floating bodies", J. Eng. Mathematics, 18(4), 273-285. https://doi.org/10.1007/BF00042842.
  33. Morison, J.R., Johnson, J.W. and Schaaf, S.A. (1950), "The force exerted by surface waves on piles", J. Petroleum Technol., 2(5), 149-154. https://doi.org/10.2118/950149-G.
  34. Muliawan, M.J., Karimirad, M. and Moan, T (2013), "Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter", Renew. Energ., 50, 47-57. https://doi.org/10.1016/j.renene.2012.05.025.
  35. Newman, J.N. (1974), "Second-order slowly varying forces on vessels in irregular waves", In Proceedings of the international symposium on dynamics of marine vehicles and structures in waves. London, UK.
  36. Park, S., Kim, K.H., Lee, K.S., Park, Y.S., Oh, H., Shin, H. and Hong, K. (2015), "Arrangement design and performance evaluation for multiple wind turbines of 10 MW class floating wave-offshore wind hybrid power generation system", J. Korean Soc. Mar. Environ. Energy, 18(2), 123-132. https://doi.org/10.7846/JKOSMEE.2015.18.2.123.
  37. Pelagic Power (2015), W2Power, Vanvikan, Norway. http://www.pelagicpower.no
  38. Perez-Collazo, C., Greaves, D. and Iglesias, G. (2015), "A review of combined wave and offshore wind energy", Renew. Sust. Energ. Rev., 42, 141-153.https://doi.org/10.1016/j.rser.2014.09.032.
  39. Poguluri, S.K., Kim, D., Ko, H.S. and Bae, Y.H. (2021), "Performance analysis of multiple wave energy converters due to rotor spacing", J. Ocean Eng. Technol., 35(3), 229-237. https://doi.org/10.26748/KSOE.2021.007.
  40. Sarker, B.R. and Faiz, T.I. (2017), "Minimizing transportation and installation costs for turbines in offshore wind farms", Renew. Energ., 101, 667-679. https://doi.org/10.1016/j.renene.2016.09.014.
  41. Song, C.Y., Lee, K. and Hong, K. (2016), "Topology optimization application for initial platform design of 10 MW grade floating type wave-wind hybrid power generation system", J. Korean Soc. Mar. Environ. Energy, 19(3), 194-202. https://doi.org/10.7846/JKOSMEE.2016.19.3.194.
  42. Soulard, T., Babarit, A. and Borgarino, B. (2013), "Preliminary assessment of a semi-submersible floating wind turbine combined with pitching wave energy converters", Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC2013), Aalborg, Denmark, September. https://hal.archives-ouvertes.fr/hal-01201908
  43. Taghipour, R. and Moan, T. (2008), "Efficient frequency-domain analysis of dynamic response for the multi-body wave energy converter in multi-directional wave", Proceedings of the ISOPE International Ocean and Polar Engineering Conference (pp. ISOPE-I), Trondheim, Norway, July.
  44. Yazdi, H., Ghafari, H.R., Ghassemi, H., He, G. and Karimirad, M. (2023), "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform", Energy, 278, 127930. https://doi.org/10.1016/j.energy.2023.127930.
  45. Yde, A., Larsen, T.J., Hansen, A.M., Fernandez, M., Bellew, S. and Plant, F.P. (2015), "Comparison of simulations and offshore measurement data of a combined floating wind and wave energy demonstration platform", J. Ocean. Wind Energy, 2, 129-137. https://doi.org/10.17736/jowe.2015.jcr34.
  46. Zhou, B., Hu, J., Jin, P., Sun, K., Li, Y. and Ning, D, (2023), "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system", Energy, 265, 126314. https://doi.org/10.1016/j.energy.2022.126314.