DOI QR코드

DOI QR Code

A hybrid approach to predict the bearing capacity of a square footing on a sand layer overlying clay

  • Erdal Uncuoglu (Department of Civil Engineering, Erciyes University) ;
  • Levent Latifoglu (Department of Civil Engineering, Erciyes University) ;
  • Zulkuf Kaya (Department of Civil Engineering, Erciyes University)
  • 투고 : 2023.02.06
  • 심사 : 2023.08.05
  • 발행 : 2023.09.10

초록

This study investigates to provide a fast solution to the problem of bearing capacity in layered soils with easily obtainable parameters that does not require the use of any charts or calculations of different parameters. Therefore, a hybrid approach including both the finite element (FE) method and machine learning technique have been applied. Firstly, a FE model has been generated which is validated by the results of in-situ loading tests. Then, a total of 192 three-dimensional FE analyses have been performed. A data set has been created utilizing the soil properties, footing sizes, layered conditions used in the FE analyses and the ultimate bearing capacity values obtained from the FE analyses to be used in multigene genetic programming (MGGP). Problem has been modeled with five input and one output parameter to propose a bearing capacity formula. Ultimate bearing capacity values estimated from the proposed formula using data set consisting of 20 data independent of total data set used in MGGP modelling have been compared to the bearing capacities calculated with semi-empirical methods. It was observed that the MGGP method yielded successful results for the problem considered. The proposed formula provides reasonable predictions and efficient enough to be used in practice.

키워드

참고문헌

  1. Amar, S., Baguelin, F., Canepa, Y. and Frank, R. (1994), "Experimental study of the settlement of shallow foundations", Geotechnical Special Publication, ASCE, 40(2), 1602-1610.
  2. Amornfa, K., Quang, H.T. and Tuan, T.V. (2022), "3D numerical analysis of piled raft foundation for Ho Chi Minh City subsoil conditions", Geomech. Eng., 29(2), 183-192. https://doi.org/10.12989/gae.2022.29.2.183.
  3. Arel, E. (2012), "Predicting the spatial distribution of soil profile in Adapazari/Turkey by artificial neural networks using CPT data", Comput. Geosci., 43, 90-100. https://doi.org/10.1016/j.cageo.2012.01.021.
  4. Askari, M., Khalkhali, A.B., Makarchian, M. and Ganjian, N. (2021), "The bearing capacity of circular footings on sand with thin layer: An experimental study", Geomech. Eng., 27(2), 123-130. https://doi.org/10.12989/gae.2021.27.2.123.
  5. Baghbani, A., Choudhury, T., Costa, S. and Reiner, J. (2022), "Application of artificial intelligence in geotechnical engineering: A state-of-the-art review", Earth-Sci. Rev., 228, 103991. https://doi.org/10.1016/j.earscirev.2022.103991..
  6. Bhattacharya, B. and Solomatine, D.P. (2006), "Machine learning in soil classification", Neural Networks, 19(2), 186-195. https://doi.org/10.1016/j.neunet.2006.01.005.
  7. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65
  8. Bonini, N.A., Bonini, C.S.B., Bisi, B.S., Reis, A.R. and Coletta, L.F.S. (2017), "Artificial neural network for classification and analysis of degraded soils", IEEE Latin Am. Transactions, 15(3), 503-509. https://doi.org/10.1109/TLA.2017.7867601.
  9. Bowles, J.E. (1997), Foundation Analysis and Design, The McGraw-Hill Companies Inc., New York.
  10. Briaud, J.L. and Jeanjean, P. (1994), "Load settlement curve method for spread footings on sand", J. Geotech. Geoenviron. Eng., 133(8), 905-920. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(905)
  11. Briaud, J.L. and Gibbens, R. (1997), "Large-scale load tests and data base of spread footings on sand", Publication No. FHWARd-97-068.
  12. Briaud, J.L. (2013), Geotechnical Engineering: Unsaturated and Saturated Soils, John Wiley & Sons, Inc. Hoboken, New Jersey.
  13. BSI Standards Publication (2015), "Code of Practice for Foundations", BS 8004:2015: The British Standards Institution.
  14. Bui, D.T., Moayedi, H., Gor, M., Jaafari, A. and Foong, L.K. (2019), "Predicting slope stability failure through machine learning paradigms", ISPRS Int. J. Geo-Information, 8(9), 395. https://doi.org/10.3390/ijgi8090395.
  15. Carvalho, L.O. and Ribeiro, D.B. (2019), "Soil classification system from cone penetration test data applying distance-based machine learning algorithms", Soils and Rocks, 42(2), 167-178. https://doi.org/10.28927/SR.422167.
  16. Cerato, A.B. (2005), "Scale effect of shallow foundation bearing capacity on granular material", Ph.D. Dissertation, University of Massachusetts Amherts, MA, USA.
  17. Cerato, A.B. and Lutenegger, A.J. (2007), "Scale effect of shallow foundation bearing capacity on granular material", J. Geotech. Geoenviron. Eng., 133(10), 1192-1202. https://doi.org/10.1061/(ASCE)10900241(2007)133:10(1192).
  18. Dustin, R. (2013), "Initial elastic modulus degradation using pressuremeter and standard penetration test results at two sites", Master of Science Thesis, University of Nevada Las Vegas.
  19. Eshkevari, S.S. (2018), "Bearing capacity of surface strip footings on layered soils", Ph.D. Dissertation, The University of Newcastle, Australia.
  20. Eshkevari, S.S., Abbo, A.J. and Kouretzis, G. (2019), "Bearing capacity of strip footings on sand over clay", Can. Geotech. J., 56, 699-709. https://doi.org/10.1139/cgj-2017-0489.
  21. Ferentinou, M.D. and Sakellariou, M.G. (2007), "Computational intelligence tools for the prediction of slope performance", Comput. Geotech., 34(5), 362-384. https://doi.org/10.1016/j.compgeo.2007.06.004.
  22. Goh, A.T.C. and Goh, S.H. (2007), "Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data", Comput. Geotech., 34(5), 410-421. https://doi.org/10.1016/j.compgeo.2007.06.001.
  23. Golap, M.A.U., Raju, S.T.U., Haque, M.R. and Hashem, M.M.A. (2021), "Hemoglobin and glucose level estimation from PPG characteristics features of fingertip video using MGGP-based model", Biomed. Signal Pr. Control, 67, 102478. https://doi.org/10.1016/j.bspc.2021.102478.
  24. Gomes, Y.F., Verri, F.A.N. and Ribeiro, D.B. (2021), "Use of machine learning techniques for predicting the bearing capacity of piles", Soils Rocks, 44(4). https://doi.org/10.28927/SR.2021.074921.
  25. Hanna, A.M. and Meyerhof, G.G. (1980), "Design charts for ultimate bearing capacity of foundations on sand overlying soft clay", Can. Geotech. J., 17, 300-303. https://doi.org/10.1139/t80-030
  26. Hanna, A.M. (1981), "Foundations on strong sand overlying weak sand", J. Geotech. Eng. Div., 107(7), 915-927. https://doi.org/10.1061/AJGEB6.0001169
  27. Hanna, A.M., Ural, D. and Saygili, G. (2007), "Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data", Soil Dyn. Earthq. Eng., 27(6), 521-540. https://doi.org/10.1016/J.SOILDYN.2006.11.001.
  28. Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hungarian Architect. Engineers, 78, 355-358.
  29. Jong, S.C., Ong, D.E.L. and Oh, E. (2021), "State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction", Tunn. Undergr. Sp. Tech., 113, 103946. https://doi.org/10.1016/j.tust.2021.103946.
  30. Juang, C.H. and Chen, C.J. (1999), "CPT-based liquefaction evaluation using artificial neural networks", Comput. -Aided Civil Infrastruct. Eng., 14(3), 221-229. https://doi.org/10.1111/0885-9507.00143.
  31. Kohestani, V.R., Hassanlourad, M. and Ardakani, A. (2015), "Evaluation of liquefaction potential based on CPT data using random forest", Nat. Hazards, 79(2), 1079-1089. https://doi.org/10.1007/s11069-015-1893-5.
  32. Kovacevic, M., Bajat, B. and Gajic, B. (2010), "Soil type classification and estimation of soil properties using support vector machines", Geoderma, 154(3-4), 340-347. https://doi.org/10.1016/j.geoderma.2009.11.005.
  33. Koza, J.R. (1992), Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge.
  34. Koza, J.R. and Poli, R. (2005), Genetic Programming, in: Search Methodologies, Springer, Boston, MA.
  35. Laman, M. and Yildiz, A. (2007), "Numerical studies of ring foundations on geogrid reinforced sand", Geosynthetics Int., 14(2), 52-65. https://doi.org/10.1680/gein.2007.14.2.52.
  36. Laman, M. and Uncuoglu, E. (2009), "Prediction of the moment capacity of pier foundations in clay using neural networks", Kuwait J. Sci. Eng., 36(1), 1-20.
  37. Lavasan, A.A. and Ghazavi, M. (2012), "Behavior of closely spaced square and circular footings on reinforced sand", Soils Found., 52(1), 160-167. https://doi.org/10.1016/j.sandf.2012.01.006.
  38. Livingston, G., Piantedosi, M., Kurup, P. and Sitharam, T.G. (2008), "An approximate method to estimate the bearing capacity of piles", Geotechnical Earthquake Engineering and Soil Dynamics IV Congress Reston: American Society of Civil Engineers, (Eds., X. Zeng, M.T. Manzari and D.R. Hiltunen), 1-10.
  39. Lo Presti, D.C.F., Jamiolkowski, M., Pallara, O., Pisciotta, V. and Ture, S. (1995) "Stress dependence of sand stiffness", Proceedings of the International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 71-76. https://scholarsmine.mst.edu/icrageesd/03icrageesd/session01/16.
  40. Lutenegger, A.J. and Adams, M.T. (1998), "Bearing capacity of footings on compacted sand", International Conference on Case Histories in Geotechnical Engineering, pp. 1216-1224. https://scholarsmine.mst.edu/icchge/4icchge/4icchgesession01/36.
  41. Maeda, K. and Miura, K. (1999), "Confining stress dependency of mechanical properties of sands", Soils and Foundations, 39, 53-67. https://doi.org/10.3208/sandf.39.53
  42. Maxwell, A.E., Sharma, M., Kite, J.S., Donaldson, K.A., Thompson, J.A., Bell, M.L. and Maynard, S.M. (2020), "Slope failure prediction using random forest machine learning and lidar in an eroded folded mountain belt", Remote Sens., 12(3), 486. https://doi.org/10.3390/rs12030486.
  43. Merifield, R.S., Sloan, S.W. and Yu, H.S. (1999), "Rigorous plasticity solutions for the bearing capacity of two-layered clays", Geotechnique, 49(4), 471-490. https://doi.org/10.1680/geot.1999.49.4.471.
  44. Meyerhof, G.G. (1974), "Ultimate bearing capacity of footings on sand overlying clay", Can. Geotech. J., 11(2), 223-229. https://doi.org/10.1139/t74-018
  45. Michalowski, R.L. and Shi, L. (1995), "Bearing capacity of footings over two-layer foundation soils", J. Geotech. Eng., 121(5), 421-428. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(421).
  46. Mosallanezhad, M. and Moayedi, H. (2017), "Comparison analysis of bearing capacity approaches for the strip footing on layered soils", Arabian J. Sci. Eng., 42, 3711-3722. https://doi.org/10.1007/s13369-017-2490-6.
  47. Nejad, F.P., Jaksa, M.B., Kakhi, M. and McCabe, B.A. (2009), "Prediction of pile settlement using artificial neural networks based on standard penetration test data", Comput. Geotech., 36(7), 1125-1133. https://doi.org/10.1016/j.compgeo.2009.04.003.
  48. Nejad, F.P. and Jaksa, M.B. (2017), "Load-settlement behavior modeling of single piles using artificial neural networks and CPT data", Comput. Geotech., 89, 9-21. https://doi.org/10.1016/j.compgeo.2017.04.003.
  49. Okamura, M., Takemura, J. and Kimura, T. (1998), "Bearing capacity predictions of sand overlying clay based on limit equilibrium methods", Soils Found., 38(1), 181-194. https://doi.org/10.3208/sandf.38.181
  50. Onyelowe, K.C., Mojtahedi, F.F., Ebid, A.M., Rezaei, A., Osinubi, K.J., Eberemu, A.O., Salahudeen, B., Gadzama, E.W., Rezazadeh, D., Jahangir, H., Yohanna, P., Onyia, M.E., Jalal, F.E., Iqbal, M., Ikpa, C., Obianyo, I.I. and Rehman, Z.U. (2023), "Selected AI optimization techniques and applications in geotechnical engineering", Cogent Eng., 10(1), 2153419. https://doi.org/10.1080/23311916.2022.2153419.
  51. Pham, Q.N. and Ohtsuka, S. (2021), "Ultimate bearing capacity of rigid footing on two layered soils of Sand-Clay", Int. J. Geomech., 21(7), 04021115. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002095.
  52. Plaxis 3D (2012), Delft, Netherlands. 
  53. Poulos, H.G. and Small, J.C. (2000), Development of Design Charts for Concrete Pavements and Industrial Ground Slabs, Chapter 2, Design Applications of Raft Foundations, Hemsley, Thomas Telford.
  54. Samui, P. (2008), "Support vector machine applied to settlement of shallow foundations on cohesionless soils", Comput. Geotech., 35(3), 419-427. https://doi.org/10.1016/j.compgeo.2007.06.014.
  55. Sasmal, S.K. and Behera, R.N. (2021), "Application of artificial intelligence methods for predicting transient response of foundation", Geomech. Eng., 27(3), 197-211. https://doi.org/10.12989/gae.2021.27.3.197.
  56. Searson, D.P., Willis, M.J. and Montague, G.A. (2007), "Coevolution of nonlinear PLS model components", J Chemometr, 12, 592-603. https://doi.org/10.1002/cem.1084.
  57. Searson, D.P., Leahy, D.E. and Willis, M.J. (2010), "Gptips: an open source genetic programming toolbox for multigene symbolic regression", Proceedings of the International Multiconference of Engineers and Computer Scientists, IMECS, Hong Kong.
  58. Shiau, J.S., Lyamin, A.V. and Sloan, S.W. (2003), "Bearing capacity of a sand layer on clay by finite element limit analysis", Can. Geotech. J., 40, 900-915. https://doi.org/10.1139/t03-042.
  59. Tang, C., Phoon, K.K., Zhang, L. And Li, D.Q. (2017), "Model uncertainty for predicting the bearing capacity of sand overlying clay", Int. J. Geomech., 17(7), 04017015. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000898.
  60. Terzaghi, K. and Peck, R.B. (1948), Soil Mechanics in Engineering Practice, John Wiley and Sons, New york.
  61. The Hardening Soil Model-A Practical Guidebook, ZSoil. PC 100701 report, revised 21.10.2018.
  62. Tjie-Liong, G. (2014), "Common mistakes on the application of Plaxis 2D in analyzing excavation problems", Int. J. Appl. Eng. Res., 9, 8291-8311.
  63. Uncuoglu, E., Laman, M., Saglamer, A. and Kara, H.B. (2008), "Prediction of lateral effective stresses in sand using artificial neural network", Soils Found., 48(2), 141-153. https://doi.org/10.3208/sandf.48.141.
  64. Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287.
  65. Uncuoglu, E., Latifoglu, L. and Ozer, A.T. (2021), "Modelling of lateral efective stress using the particle swarm optimization with machine learning models", Arabian J. Geosci., 14, 2441. https://doi.org/10.1007/s12517-021-08686-9.
  66. Uncuoglu, E., Citakoglu, H., Latifoglu, L., Bayram, S., Laman, M., Ilkentapar, M. and Oner, A.A. (2022), "Comparison of neural network, Gaussian regression, support vector machine, long short-term memory, multi-gene genetic programming, and M5 Trees methods for solving civil engineering problems", Appl. Soft Comput., 129, 109623. https://doi.org/10.1016/j.asoc.2022.109623.
  67. Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundations", J. Soil Mech. Found. Div. ASCE, 99(1), 45-73. https://doi.org/10.1061/JSFEAQ.0001846
  68. Vu Luat, N., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385