References
- Amar, S., Baguelin, F., Canepa, Y. and Frank, R. (1994), "Experimental study of the settlement of shallow foundations", Geotechnical Special Publication, ASCE, 40(2), 1602-1610.
- Amornfa, K., Quang, H.T. and Tuan, T.V. (2022), "3D numerical analysis of piled raft foundation for Ho Chi Minh City subsoil conditions", Geomech. Eng., 29(2), 183-192. https://doi.org/10.12989/gae.2022.29.2.183.
- Arel, E. (2012), "Predicting the spatial distribution of soil profile in Adapazari/Turkey by artificial neural networks using CPT data", Comput. Geosci., 43, 90-100. https://doi.org/10.1016/j.cageo.2012.01.021.
- Askari, M., Khalkhali, A.B., Makarchian, M. and Ganjian, N. (2021), "The bearing capacity of circular footings on sand with thin layer: An experimental study", Geomech. Eng., 27(2), 123-130. https://doi.org/10.12989/gae.2021.27.2.123.
- Baghbani, A., Choudhury, T., Costa, S. and Reiner, J. (2022), "Application of artificial intelligence in geotechnical engineering: A state-of-the-art review", Earth-Sci. Rev., 228, 103991. https://doi.org/10.1016/j.earscirev.2022.103991..
- Bhattacharya, B. and Solomatine, D.P. (2006), "Machine learning in soil classification", Neural Networks, 19(2), 186-195. https://doi.org/10.1016/j.neunet.2006.01.005.
- Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65
- Bonini, N.A., Bonini, C.S.B., Bisi, B.S., Reis, A.R. and Coletta, L.F.S. (2017), "Artificial neural network for classification and analysis of degraded soils", IEEE Latin Am. Transactions, 15(3), 503-509. https://doi.org/10.1109/TLA.2017.7867601.
- Bowles, J.E. (1997), Foundation Analysis and Design, The McGraw-Hill Companies Inc., New York.
- Briaud, J.L. and Jeanjean, P. (1994), "Load settlement curve method for spread footings on sand", J. Geotech. Geoenviron. Eng., 133(8), 905-920. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(905)
- Briaud, J.L. and Gibbens, R. (1997), "Large-scale load tests and data base of spread footings on sand", Publication No. FHWARd-97-068.
- Briaud, J.L. (2013), Geotechnical Engineering: Unsaturated and Saturated Soils, John Wiley & Sons, Inc. Hoboken, New Jersey.
- BSI Standards Publication (2015), "Code of Practice for Foundations", BS 8004:2015: The British Standards Institution.
- Bui, D.T., Moayedi, H., Gor, M., Jaafari, A. and Foong, L.K. (2019), "Predicting slope stability failure through machine learning paradigms", ISPRS Int. J. Geo-Information, 8(9), 395. https://doi.org/10.3390/ijgi8090395.
- Carvalho, L.O. and Ribeiro, D.B. (2019), "Soil classification system from cone penetration test data applying distance-based machine learning algorithms", Soils and Rocks, 42(2), 167-178. https://doi.org/10.28927/SR.422167.
- Cerato, A.B. (2005), "Scale effect of shallow foundation bearing capacity on granular material", Ph.D. Dissertation, University of Massachusetts Amherts, MA, USA.
- Cerato, A.B. and Lutenegger, A.J. (2007), "Scale effect of shallow foundation bearing capacity on granular material", J. Geotech. Geoenviron. Eng., 133(10), 1192-1202. https://doi.org/10.1061/(ASCE)10900241(2007)133:10(1192).
- Dustin, R. (2013), "Initial elastic modulus degradation using pressuremeter and standard penetration test results at two sites", Master of Science Thesis, University of Nevada Las Vegas.
- Eshkevari, S.S. (2018), "Bearing capacity of surface strip footings on layered soils", Ph.D. Dissertation, The University of Newcastle, Australia.
- Eshkevari, S.S., Abbo, A.J. and Kouretzis, G. (2019), "Bearing capacity of strip footings on sand over clay", Can. Geotech. J., 56, 699-709. https://doi.org/10.1139/cgj-2017-0489.
- Ferentinou, M.D. and Sakellariou, M.G. (2007), "Computational intelligence tools for the prediction of slope performance", Comput. Geotech., 34(5), 362-384. https://doi.org/10.1016/j.compgeo.2007.06.004.
- Goh, A.T.C. and Goh, S.H. (2007), "Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data", Comput. Geotech., 34(5), 410-421. https://doi.org/10.1016/j.compgeo.2007.06.001.
- Golap, M.A.U., Raju, S.T.U., Haque, M.R. and Hashem, M.M.A. (2021), "Hemoglobin and glucose level estimation from PPG characteristics features of fingertip video using MGGP-based model", Biomed. Signal Pr. Control, 67, 102478. https://doi.org/10.1016/j.bspc.2021.102478.
- Gomes, Y.F., Verri, F.A.N. and Ribeiro, D.B. (2021), "Use of machine learning techniques for predicting the bearing capacity of piles", Soils Rocks, 44(4). https://doi.org/10.28927/SR.2021.074921.
- Hanna, A.M. and Meyerhof, G.G. (1980), "Design charts for ultimate bearing capacity of foundations on sand overlying soft clay", Can. Geotech. J., 17, 300-303. https://doi.org/10.1139/t80-030
- Hanna, A.M. (1981), "Foundations on strong sand overlying weak sand", J. Geotech. Eng. Div., 107(7), 915-927. https://doi.org/10.1061/AJGEB6.0001169
- Hanna, A.M., Ural, D. and Saygili, G. (2007), "Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data", Soil Dyn. Earthq. Eng., 27(6), 521-540. https://doi.org/10.1016/J.SOILDYN.2006.11.001.
- Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hungarian Architect. Engineers, 78, 355-358.
- Jong, S.C., Ong, D.E.L. and Oh, E. (2021), "State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction", Tunn. Undergr. Sp. Tech., 113, 103946. https://doi.org/10.1016/j.tust.2021.103946.
- Juang, C.H. and Chen, C.J. (1999), "CPT-based liquefaction evaluation using artificial neural networks", Comput. -Aided Civil Infrastruct. Eng., 14(3), 221-229. https://doi.org/10.1111/0885-9507.00143.
- Kohestani, V.R., Hassanlourad, M. and Ardakani, A. (2015), "Evaluation of liquefaction potential based on CPT data using random forest", Nat. Hazards, 79(2), 1079-1089. https://doi.org/10.1007/s11069-015-1893-5.
- Kovacevic, M., Bajat, B. and Gajic, B. (2010), "Soil type classification and estimation of soil properties using support vector machines", Geoderma, 154(3-4), 340-347. https://doi.org/10.1016/j.geoderma.2009.11.005.
- Koza, J.R. (1992), Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge.
- Koza, J.R. and Poli, R. (2005), Genetic Programming, in: Search Methodologies, Springer, Boston, MA.
- Laman, M. and Yildiz, A. (2007), "Numerical studies of ring foundations on geogrid reinforced sand", Geosynthetics Int., 14(2), 52-65. https://doi.org/10.1680/gein.2007.14.2.52.
- Laman, M. and Uncuoglu, E. (2009), "Prediction of the moment capacity of pier foundations in clay using neural networks", Kuwait J. Sci. Eng., 36(1), 1-20.
- Lavasan, A.A. and Ghazavi, M. (2012), "Behavior of closely spaced square and circular footings on reinforced sand", Soils Found., 52(1), 160-167. https://doi.org/10.1016/j.sandf.2012.01.006.
- Livingston, G., Piantedosi, M., Kurup, P. and Sitharam, T.G. (2008), "An approximate method to estimate the bearing capacity of piles", Geotechnical Earthquake Engineering and Soil Dynamics IV Congress Reston: American Society of Civil Engineers, (Eds., X. Zeng, M.T. Manzari and D.R. Hiltunen), 1-10.
- Lo Presti, D.C.F., Jamiolkowski, M., Pallara, O., Pisciotta, V. and Ture, S. (1995) "Stress dependence of sand stiffness", Proceedings of the International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 71-76. https://scholarsmine.mst.edu/icrageesd/03icrageesd/session01/16.
- Lutenegger, A.J. and Adams, M.T. (1998), "Bearing capacity of footings on compacted sand", International Conference on Case Histories in Geotechnical Engineering, pp. 1216-1224. https://scholarsmine.mst.edu/icchge/4icchge/4icchgesession01/36.
- Maeda, K. and Miura, K. (1999), "Confining stress dependency of mechanical properties of sands", Soils and Foundations, 39, 53-67. https://doi.org/10.3208/sandf.39.53
- Maxwell, A.E., Sharma, M., Kite, J.S., Donaldson, K.A., Thompson, J.A., Bell, M.L. and Maynard, S.M. (2020), "Slope failure prediction using random forest machine learning and lidar in an eroded folded mountain belt", Remote Sens., 12(3), 486. https://doi.org/10.3390/rs12030486.
- Merifield, R.S., Sloan, S.W. and Yu, H.S. (1999), "Rigorous plasticity solutions for the bearing capacity of two-layered clays", Geotechnique, 49(4), 471-490. https://doi.org/10.1680/geot.1999.49.4.471.
- Meyerhof, G.G. (1974), "Ultimate bearing capacity of footings on sand overlying clay", Can. Geotech. J., 11(2), 223-229. https://doi.org/10.1139/t74-018
- Michalowski, R.L. and Shi, L. (1995), "Bearing capacity of footings over two-layer foundation soils", J. Geotech. Eng., 121(5), 421-428. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(421).
- Mosallanezhad, M. and Moayedi, H. (2017), "Comparison analysis of bearing capacity approaches for the strip footing on layered soils", Arabian J. Sci. Eng., 42, 3711-3722. https://doi.org/10.1007/s13369-017-2490-6.
- Nejad, F.P., Jaksa, M.B., Kakhi, M. and McCabe, B.A. (2009), "Prediction of pile settlement using artificial neural networks based on standard penetration test data", Comput. Geotech., 36(7), 1125-1133. https://doi.org/10.1016/j.compgeo.2009.04.003.
- Nejad, F.P. and Jaksa, M.B. (2017), "Load-settlement behavior modeling of single piles using artificial neural networks and CPT data", Comput. Geotech., 89, 9-21. https://doi.org/10.1016/j.compgeo.2017.04.003.
- Okamura, M., Takemura, J. and Kimura, T. (1998), "Bearing capacity predictions of sand overlying clay based on limit equilibrium methods", Soils Found., 38(1), 181-194. https://doi.org/10.3208/sandf.38.181
- Onyelowe, K.C., Mojtahedi, F.F., Ebid, A.M., Rezaei, A., Osinubi, K.J., Eberemu, A.O., Salahudeen, B., Gadzama, E.W., Rezazadeh, D., Jahangir, H., Yohanna, P., Onyia, M.E., Jalal, F.E., Iqbal, M., Ikpa, C., Obianyo, I.I. and Rehman, Z.U. (2023), "Selected AI optimization techniques and applications in geotechnical engineering", Cogent Eng., 10(1), 2153419. https://doi.org/10.1080/23311916.2022.2153419.
- Pham, Q.N. and Ohtsuka, S. (2021), "Ultimate bearing capacity of rigid footing on two layered soils of Sand-Clay", Int. J. Geomech., 21(7), 04021115. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002095.
- Plaxis 3D (2012), Delft, Netherlands.
- Poulos, H.G. and Small, J.C. (2000), Development of Design Charts for Concrete Pavements and Industrial Ground Slabs, Chapter 2, Design Applications of Raft Foundations, Hemsley, Thomas Telford.
- Samui, P. (2008), "Support vector machine applied to settlement of shallow foundations on cohesionless soils", Comput. Geotech., 35(3), 419-427. https://doi.org/10.1016/j.compgeo.2007.06.014.
- Sasmal, S.K. and Behera, R.N. (2021), "Application of artificial intelligence methods for predicting transient response of foundation", Geomech. Eng., 27(3), 197-211. https://doi.org/10.12989/gae.2021.27.3.197.
- Searson, D.P., Willis, M.J. and Montague, G.A. (2007), "Coevolution of nonlinear PLS model components", J Chemometr, 12, 592-603. https://doi.org/10.1002/cem.1084.
- Searson, D.P., Leahy, D.E. and Willis, M.J. (2010), "Gptips: an open source genetic programming toolbox for multigene symbolic regression", Proceedings of the International Multiconference of Engineers and Computer Scientists, IMECS, Hong Kong.
- Shiau, J.S., Lyamin, A.V. and Sloan, S.W. (2003), "Bearing capacity of a sand layer on clay by finite element limit analysis", Can. Geotech. J., 40, 900-915. https://doi.org/10.1139/t03-042.
- Tang, C., Phoon, K.K., Zhang, L. And Li, D.Q. (2017), "Model uncertainty for predicting the bearing capacity of sand overlying clay", Int. J. Geomech., 17(7), 04017015. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000898.
- Terzaghi, K. and Peck, R.B. (1948), Soil Mechanics in Engineering Practice, John Wiley and Sons, New york.
- The Hardening Soil Model-A Practical Guidebook, ZSoil. PC 100701 report, revised 21.10.2018.
- Tjie-Liong, G. (2014), "Common mistakes on the application of Plaxis 2D in analyzing excavation problems", Int. J. Appl. Eng. Res., 9, 8291-8311.
- Uncuoglu, E., Laman, M., Saglamer, A. and Kara, H.B. (2008), "Prediction of lateral effective stresses in sand using artificial neural network", Soils Found., 48(2), 141-153. https://doi.org/10.3208/sandf.48.141.
- Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287.
- Uncuoglu, E., Latifoglu, L. and Ozer, A.T. (2021), "Modelling of lateral efective stress using the particle swarm optimization with machine learning models", Arabian J. Geosci., 14, 2441. https://doi.org/10.1007/s12517-021-08686-9.
- Uncuoglu, E., Citakoglu, H., Latifoglu, L., Bayram, S., Laman, M., Ilkentapar, M. and Oner, A.A. (2022), "Comparison of neural network, Gaussian regression, support vector machine, long short-term memory, multi-gene genetic programming, and M5 Trees methods for solving civil engineering problems", Appl. Soft Comput., 129, 109623. https://doi.org/10.1016/j.asoc.2022.109623.
- Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundations", J. Soil Mech. Found. Div. ASCE, 99(1), 45-73. https://doi.org/10.1061/JSFEAQ.0001846
- Vu Luat, N., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385