DOI QR코드

DOI QR Code

Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes

  • Mohammad Shamsi (Department of Civil Engineering, University of Hormozgan) ;
  • Ehsan Moshtagh (Department of Civil Engineering, University of Garmsar) ;
  • Amir H. Vakili (Department of Environmental and Civil Engineering, Faculty of Engineering, Karabuk University)
  • 투고 : 2023.03.13
  • 심사 : 2023.07.31
  • 발행 : 2023.09.10

초록

The coupled soil-pile-structure seismic response is recently in the spotlight of researchers because of its extensive applications in the different fields of engineering such as bridges, offshore platforms, wind turbines, and buildings. In this paper, a simple analytical model is developed to evaluate the dynamic performance of seismically isolated bridges considering triple interactions of soil, piles, and bridges simultaneously. Novel expressions are proposed to present the dynamic behavior of pile groups in inhomogeneous soils with various shear modulus along with depth. Both cohesive and cohesionless soil deposits can be simulated by this analytical model with a generalized function of varied shear modulus along the soil depth belonging to an inhomogeneous stratum. The methodology is discussed in detail and validated by rigorous dynamic solution of 3D continuum modeling, and time history analysis of centrifuge tests. The proposed analytical model accuracy is guaranteed by the acceptable agreement between the experimental/numerical and analytical results. A comparison of the proposed linear model results with nonlinear centrifuge tests showed that during moderate (frequent) earthquakes the relative differences in responses of the superstructure and the pile cap can be ignored. However, during strong excitations, the response calculated in the linear time history analysis is always lower than the real conditions with the nonlinear behavior of the soil-pile-bridge system. The current simple and efficient method provides the accuracy and the least computational costs in comparison to the full three-dimensional analyses.

키워드

과제정보

The authors would like to thank the University of Hormozgan, and the University of Garmsar for their partial support allocated to this research study.

참고문헌

  1. AASHTO (1997), "Guide specifications for seismic isolation design, American association of state highway and transportation officials, Washington", American Association of State Highway and Transportation Officials, Washington, D.C., 2014, July.
  2. Amornfa, K., Quang, H.T. and Tuan, T.V. (2023), "Effect of groundwater level change on piled raft foundation in Ho Chi Minh City, Viet Nam using 3D-FEM", Geomech. Eng., 32(4), 387-396. https://doi.org/10.12989/gae.2023.32.4.387.
  3. Antoniadis, I.A., Kapasakalis, K.A. and Sapountzakis. E.J. (2019), "Isolation or Damping? A soil-dependent approach based on the KDamper concept", Proceedings of the 2nd Int. Conf. Nat. Hazards Infrastruct.(ICONHIC 2019).
  4. Carbonari, S., Morici, M., Dezi, F., Gara, F. and Leoni, G. (2017), "Soil-structure interaction effects in single bridge piers founded on inclined pile groups", Soil Dyn. Earthq. Eng., 92, 52-67. https://doi.org/10.1016/j.soildyn.2016.10.005.
  5. Clough, R.W. and Penzien, J. (1975), Dynamics of Structures. McGraw-Hill.
  6. Curras, C.J., Boulanger, R.W., Kutter, B.L. and Wilson, D.W. (2001), "Dynamic experiments and analyses of a pile-group-supported structure", J. Geotech. Geoenviron. Eng., 127(7), 585-596. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(585).
  7. Dezi, F., Carbonari, S., Tombari, A. and Leoni, G. (2012), "Soil-structure interaction in the seismic response of an isolated three span motorway overcrossing founded on piles", Soil Dynam. Earthq. Eng., 41, 151-163. https://doi.org/10.1016/j.soildyn.2012.05.016.
  8. Di Laora, R., Mylonakis, G. and Mandolini, A. (2013), "Pile-head kinematic bending in layered soil", Earthq. Eng. Struct. D., 42(3), 319-337. https://doi.org/10.1002/eqe.2201.
  9. Di Laora, R, and Rovithis, E. (2015), "Kinematic bending of fixed-head piles in nonhomogeneous soil", J. Geotech. Geoenviron. Eng., 141(4), 04014126. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001270.
  10. Elchiti, I., Saad, G. and Najjar, S.S. (2023), "Passive P-y curves for rigid basement walls supporting granular soils", Geomech. Eng., 32(3), 335-346. https://doi.org/10.12989/gae.2023.32.3.335.
  11. Elgamal, A., Yan, L., Yang, Z. and Conte, J.P. (2008), "Three-dimensional seismic response of Humboldt Bay Bridge-foundation-ground system", J. Struct. Eng., 134(7), 1165-1176. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1165).
  12. EN, BS. (2004), "Eurocode 8: Design of structures for earthquake resistance-part 5: Foundations, retaining structures and geotechnical aspects".
  13. Gazetas, G. (1991), "Foundation vibrations", Foundation engineering handbook, Springer.
  14. Gibson, R.E. (1974), "The analytical method in soil mechanics", Geotechnique, 24(2), 115-140. https://doi.org/10.1680/geot.1974.24.2.115
  15. Gonzalez, F., Carbonari, S., Padron, L.A., Morici, M., Aznarez, J.J., Dezi, F., Maeso, O. and Leoni. G. (2020), "Benefits of inclined pile foundations in earthquake resistant design of bridges", Eng. Struct., 203, 109873. https://doi.org/10.1016/j.engstruct.2019.109873.
  16. Gonzalez, F., Padron, L.A., Carbonari, S., Morici, M., Aznarez, J.J., Dezi, F. and Leoni, G. (2019), "Seismic response of bridge piers on pile groups for different soil damping models and lumped parameter representations of the foundation", Earthq. Eng. Struct. D., 48(3), 306-327. https://doi.org/10.1002/eqe.3137
  17. Haouari, H. and Bouafia, A. (2023), "Single piles under cyclic lateral loads - full scale tests and numerical modelling", Geomech. Eng., 32(1), 21-34. https://doi.org/10.12989/gae.2023.32.1.021.
  18. Jalili, J., Askari, F., Haghshenas, E. and Marghaiezadeh, A. (2023), "Investigation on economical method of foundation construction on soft soils in seismic zones: A case study in Southern Iran", Geomech. Eng., 32(2), 209-232. https://doi.org/10.12989/gae.2023.32.2.209.
  19. Ju, S.H. (2013), "Improvement of bridge structures to increase the safety of moving trains during earthquakes", Eng. Struct., 56, 501-508. https://doi.org/10.1016/j.engstruct.2013.05.035.
  20. Kampitsis, A.E., Sapountzakis, E.J., Giannakos, S.K. and Gerolymos, N.A. (2013), "Seismic soil-pile-structure kinematic and inertial interaction-a new beam approach", Soil Dyn. Earthq. Eng., 55, 211-224. https://doi.org/10.1016/j.soildyn.2013.09.023.
  21. Kapasakalis, K.A., Sapountzakis, E.J. and Antoniadis, I.A. (2018), "Kdamper concept in seismic isolation of building structures with soil structure interaction", Proceedings of the 13th international conference on computational structures technology (CST2018).
  22. Kapasakalis, K.A., Alvertos, A.E., Mantakas, A.G., Antoniadis, I.A. and Sapountzakis, E.J. (2020), "Advanced negative stiffness vibration absorber coupled with soil-structure interaction for seismic protection of buildings", Proceedings of the Int Conf Struct Dyn EURODYN. Vol. 2.
  23. Kapasakalis, K.A., Antoniadis, I.A. and Sapountzakis, E.J. (2021), "A soil-dependent approach for the design of novel negative stiffness seismic protection devices", Appl. Sci., 11(14), 6295. https://doi.org/10.3390/app11146295.
  24. Kapasakalis, K., Sapountzakis, E. and Antoniadis, I. (2018), "Optimal design of the kdamper concept for structres on compliant supports".
  25. Karatzia, X. and Mylonakis, G. (2012), "Horizontal response of piles in inhomogeneous soil: Simple analysis", Proceedings of the 2nd International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Taormina, Italy. Paper.
  26. Kunde, M.C. and Jangid, R.S. (2006), "Effects of pier and deck flexibility on the seismic response of isolated bridges", J. Bridge Eng., 11(1), 109-121. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:1(109).
  27. Lesgidis, N., Sextos, A. and Kwon, O.S. (2018), "A frequency-dependent and intensity-dependent macroelement for reduced order seismic analysis of soil-structure interacting systems", Earthq. Eng Struct. D., 47(11), 2172-2194. https://doi.org/10.1002/eqe.3063.
  28. Limkatanyu, S., Sae-Long, W., Damrongwiriyanupap, N., Sukontasukkul, P., Imjai, T., Chompoorat, T. and Hansapinyo, C. (2023), "Nonlinear shear-flexure-interaction RC frame element on winkler-pasternak foundation", Geomech. Eng., 32(1), 69-84. https://doi.org/10.12989/gae.2023.32.1.069.
  29. Mantakas, A.G., Kapasakalis, K.A., Alvertos, A.E., Antoniadis, I.A. and Sapountzakis, E.J. (2022), "A negative stiffness dynamic base absorber for seismic retrofitting of residential buildings", Struct. Control Health Monit., 29(12), e3127. https://doi.org/10.1002/stc.3127.
  30. Mantakas, A., Tsatsis, A., Loli, M., Kourkoulis, R. and Gazetas, G. (2023), "Seismic response of a motorway bridge founded in an active landslide: A case study", Bull. Earthq. Eng., 21(1), 605-32. https://doi.org/10.1007/s10518-022-01544-3.
  31. Maravas, A., Mylonakis, G. and Karabalis, D.L. (2014), "Simplified discrete systems for dynamic analysis of structures on footings and piles", Soil Dyn. Earthq. Eng., 61-62, 29-39. https://doi.org/10.1016/j.soildyn.2014.01.016.
  32. Massumi, A. and Moshtagh, E. (2013), "A new damage index for RC buildings based on variations of nonlinear fundamental period", 22(1), 50-61. https://doi.org/10.1002/tal.656.
  33. Matsagar, V.A. and Jangid, R.S. (2008), "Base isolation for seismic retrofitting of structures", Practice Periodical on Structural Design and Construction, 13(4), 175-185. https://doi.org/10.1061/(ASCE)1084-0680(2008)13:4(175).
  34. Medina, C., Alamo, G.M., Padron, L.A., Aznarez, J.J. and Maeso, O. (2019), "Application of regression models for the estimation of the flexible-base period of pile-supported structures in continuously inhomogeneous soils", Eng. Struct., 190, 76-89. https://doi.org/10.1016/j.engstruct.2019.03.112.
  35. Moshtagh, E., Eskandari-Ghadi, M. and Pan, E. (2019), "Time-harmonic dislocations in a multilayered transversely isotropic magneto-electro-elastic half-space", 30(13), 1-19. https://doi.org/10.1177/1045389X19849286.
  36. Moshtagh, E., Pan, E. and Eskandari-Ghadi, M. (2017), "Wave propagation in a multilayered magneto-electro-elastic half-space induced by external/Internal circular time-harmonic mechanical loading", 128, 243-261. http://dx.doi.org/10.1016/j.ijsolstr.2017.08.032.
  37. Moshtagh, E., Pan, E. and Eskandari-Ghadi, M. (2018), "Shear excitation of a multilayered magneto-electro-elastic half-space considering a vast frequency content", 123, 214-235. https://doi.org/10.1016/j.ijengsci.2017.11.012.
  38. Mylonakis, G. and Gazetas, G. (2000), "Seismic soil-structure interaction: Beneficial or Detrimental?", J. Earthq. Eng., 4(3), 277-301. https://doi.org/10.1080/13632460009350372.
  39. Nikolaou, S., Mylonakis, G. Gazetas, G. and Tazoh, T. (2001), "Kinematic pile bending during earthquakes: Analysis and field measurements", Geotechnique, 51(5), 425-440. https://doi.org/10.1680/geot.2001.51.5.425.
  40. Novak, M. (1974), "Dynamic stiffness and damping of piles", Can. Geotech. J., 11(4), 574-598. https://doi.org/10.1139/t74-059.
  41. Novak, M. and Aboul-Ella, F. (1978), "Impedance functions of piles in layered media", J. Eng. Mech.Div., 104(3), 643-661. https://doi.org/10.1061/JMCEA3.0002366.
  42. Pacheco, G., Suarez, L.E. and Pando, M. (2008), "Dynamic lateral response of single piles considering soil inertia contributions", Proceedings of the World Conference on Earthquake Engineering, Beijing, China.
  43. Papathanasiou, S.M., Tsopelas, P., Prapa, E. and Ucak, A. (2016), "Infulence of soil-structure interaction modeling on the response of seismically isolated bridges", Int. J. Bridge Eng., 39-70.
  44. Phoon, K.K. and Huang, S.P. (2012), "Uncertainty quantification using multi-dimensional hermite polynomials", 1-10. https://doi.org/10.1061/40914(233)12.
  45. Program, National Cooperative Highway Research (2001), Static and Dynamic Lateral Loading of Pile Groups.
  46. Qiu, Z., Ebeido, A., Almutairi, A., Lu, J., Elgamal, A., Shing, P.B. and Martin, G. (2020), "Aspects of bridge-ground seismic response and liquefaction-induced deformations", Earthq. Eng. Struct. D., 49(4), 375-393. https://doi.org/10.1002/eqe.3244.
  47. Rahmani, A., Taiebat, M., Liam Finn, W.D. and Ventura, C.E. (2018), "Evaluation of P-y springs for nonlinear static and seismic soil-pile interaction analysis under lateral loading", Soil Dyn. Earthq. Eng., 115, 438-447. https://doi.org/10.1016/j.soildyn.2018.07.049.
  48. Rahmani, A., Taiebat, M., Liam Finn, W.D. and Ventura, C.E. (2016), "Evaluation of substructuring method for seismic soil-structure interaction analysis of bridges", Soil Dyn. Earthq. Eng., 90, 112-127. https://doi.org/10.1016/j.soildyn.2016.08.013.
  49. Rovithis, E.N., Pitilakis, K.D. and Mylonakis, G.E. (2011), "A note on a pseudo-natural SSI frequency for coupled soil-pile-structure systems", Soil Dyn. Earthq. Eng., 31(7), 873-878. https://doi.org/10.1016/j.soildyn.2011.01.006.
  50. Saitoh, M. (2012), "On the performance of lumped parameter models with gyro-mass elements for the impedance function of a pile-group supporting a single-degree-of-freedom system", Earthq. Eng. Struct. D., 41(4), 623-641. https://doi.org/10.1002/eqe.1147.
  51. Santisi d'Avila, M.P. and Lopez-Caballero, F. (2018), "Analysis of nonlinear soil-structure interaction effects: 3D frame structure and 1-directional propagation of a 3-component seismic wave", Comput. Struct., 207, 83-94. https://doi.org/10.1016/j.compstruc.2018.02.002.
  52. Shabani, M.J, Shamsi, M. and Ghanbari, A. (2021a), "Dynamic response of three-dimensional mid-rise buildings adjacent to slope under seismic excitation in the direction perpendicular to the slope", Int. J. Geomech., 21(11), https://doi.org/10.1061/(ASCE)GM.1943-5622.0002158.
  53. Shabani, M.J., Shamsi, M. and Ghanbari, A. (2021b), "Seismic response of RC moment frame including topography-soil-structure interaction", Practice Periodical on Structural Design and Construction, 26(4), https://doi.org/10.1061/(ASCE)SC.1943-5576.0000625.
  54. Shabani, M.J., Shamsi, M. and Ghanbari, A. (2021), "Slope topography effect on the seismic response of mid-rise buildings considering topography-soil-structure interaction", Earthq. Struct., 20(2), 187-200. https://doi.org/10.12989/eas.2021.20.2.187.
  55. Shamsi, M., Zakerinejad, M. and Vakili, A.H. (2021), "Seismic analysis of soil-pile-bridge-train interaction for isolated monorail and railway bridges under coupled lateral-vertical ground motions", Eng. Struct., 248, https://doi.org/10.1016/j.engstruct.2021.113258.
  56. Shamsi, M. and Ghanbari, A. (2020), "Seismic retrofit of Monorail bridges considering soil-pile-bridge-train interaction", J. Bridge Eng., 25(10), 04020075. https://doi.org/10.1061/(ASCE)BE.1943-5592.00016.
  57. Shamsi, M., Shabani, M.J. and Vakili, A.H. (2022), "Three-dimensional seismic nonlinear analysis of topography-structure-soil-structure interaction for buildings near slopes", Int. J. Geomech., 22(3), 04021295. https://doi.org/10.1061/(ASCE)GM.1943-5622.000230.
  58. Shamsi, M., Shabani, M.J.., Zakerinejad, M. and Vakili, A.H. (2022), "Slope topographic effects on the nonlinear seismic behavior of groups of similar buildings", Earthq. Eng. Struct. D., 51(10), 2292-2314. https://doi.org/10.1002/eqe.3664.
  59. Spyrakos, C.C. (1992), "Seismic behavior of bridge piers including soil-structure interaction", Comput. Struct., 43(2), 373-384. https://doi.org/10.1016/0045-7949(92)90155-S.
  60. Spyrakos, C.C. (1990), "Assessment of SSI on the longitudinal seismic response short span bridges", Constr. Build. Mater., 4(4), 170-175. https://doi.org/10.1016/0950-0618(90)90036-Z.
  61. Tongaonkar, N.P. and Jangid, R.S. (2003), "Seismic response of isolated bridges with soil-structure interaction", Soil Dyn. Earthq. Eng., 23(4), 287-302. https://doi.org/10.1016/S0267-7261(03)00020-4.
  62. Tubaldi, E., Mitoulis, S.A. and Ahmadi, H. (2018), "Comparison of different models for high damping rubber bearings in seismically isolated bridges", Soil Dyn. Earthq. Eng., 104, 329-345. https://doi.org/10.1016/j.soildyn.2017.09.017.
  63. Ucak, A. and Tsopelas, P. (2008), "Effect of soil-Structure Interaction on Seismic Isolated Bridges", J. Struct. Eng., 134(7), 1154-1164. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1154).
  64. Wilson, D.W. (1998), "Soil-pile-superstructure interaction in liquefying sand and soft clay", Doctoral Dissertation, University of California, Davis.
  65. Wolf, J.P. (1985), Dynamic Soil-Structure Interaction, Englewood Cliffs, N.J: Prentice-Hall.
  66. Xiong, W., Jiang, L.Z. and Li, Y.Z. (2016), "Influence of soil-structure interaction (Structure-to-soil relative stiffness and mass ratio) on the fundamental period of buildings: Experimental observation and analytical verification", Bull. Earthq. Eng., 14(1), 139-160. https://doi.org/10.1007/s10518-015-9814-2.