과제정보
The authors would like to thank the University of Hormozgan, and the University of Garmsar for their partial support allocated to this research study.
참고문헌
- AASHTO (1997), "Guide specifications for seismic isolation design, American association of state highway and transportation officials, Washington", American Association of State Highway and Transportation Officials, Washington, D.C., 2014, July.
- Amornfa, K., Quang, H.T. and Tuan, T.V. (2023), "Effect of groundwater level change on piled raft foundation in Ho Chi Minh City, Viet Nam using 3D-FEM", Geomech. Eng., 32(4), 387-396. https://doi.org/10.12989/gae.2023.32.4.387.
- Antoniadis, I.A., Kapasakalis, K.A. and Sapountzakis. E.J. (2019), "Isolation or Damping? A soil-dependent approach based on the KDamper concept", Proceedings of the 2nd Int. Conf. Nat. Hazards Infrastruct.(ICONHIC 2019).
- Carbonari, S., Morici, M., Dezi, F., Gara, F. and Leoni, G. (2017), "Soil-structure interaction effects in single bridge piers founded on inclined pile groups", Soil Dyn. Earthq. Eng., 92, 52-67. https://doi.org/10.1016/j.soildyn.2016.10.005.
- Clough, R.W. and Penzien, J. (1975), Dynamics of Structures. McGraw-Hill.
- Curras, C.J., Boulanger, R.W., Kutter, B.L. and Wilson, D.W. (2001), "Dynamic experiments and analyses of a pile-group-supported structure", J. Geotech. Geoenviron. Eng., 127(7), 585-596. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(585).
- Dezi, F., Carbonari, S., Tombari, A. and Leoni, G. (2012), "Soil-structure interaction in the seismic response of an isolated three span motorway overcrossing founded on piles", Soil Dynam. Earthq. Eng., 41, 151-163. https://doi.org/10.1016/j.soildyn.2012.05.016.
- Di Laora, R., Mylonakis, G. and Mandolini, A. (2013), "Pile-head kinematic bending in layered soil", Earthq. Eng. Struct. D., 42(3), 319-337. https://doi.org/10.1002/eqe.2201.
- Di Laora, R, and Rovithis, E. (2015), "Kinematic bending of fixed-head piles in nonhomogeneous soil", J. Geotech. Geoenviron. Eng., 141(4), 04014126. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001270.
- Elchiti, I., Saad, G. and Najjar, S.S. (2023), "Passive P-y curves for rigid basement walls supporting granular soils", Geomech. Eng., 32(3), 335-346. https://doi.org/10.12989/gae.2023.32.3.335.
- Elgamal, A., Yan, L., Yang, Z. and Conte, J.P. (2008), "Three-dimensional seismic response of Humboldt Bay Bridge-foundation-ground system", J. Struct. Eng., 134(7), 1165-1176. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1165).
- EN, BS. (2004), "Eurocode 8: Design of structures for earthquake resistance-part 5: Foundations, retaining structures and geotechnical aspects".
- Gazetas, G. (1991), "Foundation vibrations", Foundation engineering handbook, Springer.
- Gibson, R.E. (1974), "The analytical method in soil mechanics", Geotechnique, 24(2), 115-140. https://doi.org/10.1680/geot.1974.24.2.115
- Gonzalez, F., Carbonari, S., Padron, L.A., Morici, M., Aznarez, J.J., Dezi, F., Maeso, O. and Leoni. G. (2020), "Benefits of inclined pile foundations in earthquake resistant design of bridges", Eng. Struct., 203, 109873. https://doi.org/10.1016/j.engstruct.2019.109873.
- Gonzalez, F., Padron, L.A., Carbonari, S., Morici, M., Aznarez, J.J., Dezi, F. and Leoni, G. (2019), "Seismic response of bridge piers on pile groups for different soil damping models and lumped parameter representations of the foundation", Earthq. Eng. Struct. D., 48(3), 306-327. https://doi.org/10.1002/eqe.3137
- Haouari, H. and Bouafia, A. (2023), "Single piles under cyclic lateral loads - full scale tests and numerical modelling", Geomech. Eng., 32(1), 21-34. https://doi.org/10.12989/gae.2023.32.1.021.
- Jalili, J., Askari, F., Haghshenas, E. and Marghaiezadeh, A. (2023), "Investigation on economical method of foundation construction on soft soils in seismic zones: A case study in Southern Iran", Geomech. Eng., 32(2), 209-232. https://doi.org/10.12989/gae.2023.32.2.209.
- Ju, S.H. (2013), "Improvement of bridge structures to increase the safety of moving trains during earthquakes", Eng. Struct., 56, 501-508. https://doi.org/10.1016/j.engstruct.2013.05.035.
- Kampitsis, A.E., Sapountzakis, E.J., Giannakos, S.K. and Gerolymos, N.A. (2013), "Seismic soil-pile-structure kinematic and inertial interaction-a new beam approach", Soil Dyn. Earthq. Eng., 55, 211-224. https://doi.org/10.1016/j.soildyn.2013.09.023.
- Kapasakalis, K.A., Sapountzakis, E.J. and Antoniadis, I.A. (2018), "Kdamper concept in seismic isolation of building structures with soil structure interaction", Proceedings of the 13th international conference on computational structures technology (CST2018).
- Kapasakalis, K.A., Alvertos, A.E., Mantakas, A.G., Antoniadis, I.A. and Sapountzakis, E.J. (2020), "Advanced negative stiffness vibration absorber coupled with soil-structure interaction for seismic protection of buildings", Proceedings of the Int Conf Struct Dyn EURODYN. Vol. 2.
- Kapasakalis, K.A., Antoniadis, I.A. and Sapountzakis, E.J. (2021), "A soil-dependent approach for the design of novel negative stiffness seismic protection devices", Appl. Sci., 11(14), 6295. https://doi.org/10.3390/app11146295.
- Kapasakalis, K., Sapountzakis, E. and Antoniadis, I. (2018), "Optimal design of the kdamper concept for structres on compliant supports".
- Karatzia, X. and Mylonakis, G. (2012), "Horizontal response of piles in inhomogeneous soil: Simple analysis", Proceedings of the 2nd International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Taormina, Italy. Paper.
- Kunde, M.C. and Jangid, R.S. (2006), "Effects of pier and deck flexibility on the seismic response of isolated bridges", J. Bridge Eng., 11(1), 109-121. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:1(109).
- Lesgidis, N., Sextos, A. and Kwon, O.S. (2018), "A frequency-dependent and intensity-dependent macroelement for reduced order seismic analysis of soil-structure interacting systems", Earthq. Eng Struct. D., 47(11), 2172-2194. https://doi.org/10.1002/eqe.3063.
- Limkatanyu, S., Sae-Long, W., Damrongwiriyanupap, N., Sukontasukkul, P., Imjai, T., Chompoorat, T. and Hansapinyo, C. (2023), "Nonlinear shear-flexure-interaction RC frame element on winkler-pasternak foundation", Geomech. Eng., 32(1), 69-84. https://doi.org/10.12989/gae.2023.32.1.069.
- Mantakas, A.G., Kapasakalis, K.A., Alvertos, A.E., Antoniadis, I.A. and Sapountzakis, E.J. (2022), "A negative stiffness dynamic base absorber for seismic retrofitting of residential buildings", Struct. Control Health Monit., 29(12), e3127. https://doi.org/10.1002/stc.3127.
- Mantakas, A., Tsatsis, A., Loli, M., Kourkoulis, R. and Gazetas, G. (2023), "Seismic response of a motorway bridge founded in an active landslide: A case study", Bull. Earthq. Eng., 21(1), 605-32. https://doi.org/10.1007/s10518-022-01544-3.
- Maravas, A., Mylonakis, G. and Karabalis, D.L. (2014), "Simplified discrete systems for dynamic analysis of structures on footings and piles", Soil Dyn. Earthq. Eng., 61-62, 29-39. https://doi.org/10.1016/j.soildyn.2014.01.016.
- Massumi, A. and Moshtagh, E. (2013), "A new damage index for RC buildings based on variations of nonlinear fundamental period", 22(1), 50-61. https://doi.org/10.1002/tal.656.
- Matsagar, V.A. and Jangid, R.S. (2008), "Base isolation for seismic retrofitting of structures", Practice Periodical on Structural Design and Construction, 13(4), 175-185. https://doi.org/10.1061/(ASCE)1084-0680(2008)13:4(175).
- Medina, C., Alamo, G.M., Padron, L.A., Aznarez, J.J. and Maeso, O. (2019), "Application of regression models for the estimation of the flexible-base period of pile-supported structures in continuously inhomogeneous soils", Eng. Struct., 190, 76-89. https://doi.org/10.1016/j.engstruct.2019.03.112.
- Moshtagh, E., Eskandari-Ghadi, M. and Pan, E. (2019), "Time-harmonic dislocations in a multilayered transversely isotropic magneto-electro-elastic half-space", 30(13), 1-19. https://doi.org/10.1177/1045389X19849286.
- Moshtagh, E., Pan, E. and Eskandari-Ghadi, M. (2017), "Wave propagation in a multilayered magneto-electro-elastic half-space induced by external/Internal circular time-harmonic mechanical loading", 128, 243-261. http://dx.doi.org/10.1016/j.ijsolstr.2017.08.032.
- Moshtagh, E., Pan, E. and Eskandari-Ghadi, M. (2018), "Shear excitation of a multilayered magneto-electro-elastic half-space considering a vast frequency content", 123, 214-235. https://doi.org/10.1016/j.ijengsci.2017.11.012.
- Mylonakis, G. and Gazetas, G. (2000), "Seismic soil-structure interaction: Beneficial or Detrimental?", J. Earthq. Eng., 4(3), 277-301. https://doi.org/10.1080/13632460009350372.
- Nikolaou, S., Mylonakis, G. Gazetas, G. and Tazoh, T. (2001), "Kinematic pile bending during earthquakes: Analysis and field measurements", Geotechnique, 51(5), 425-440. https://doi.org/10.1680/geot.2001.51.5.425.
- Novak, M. (1974), "Dynamic stiffness and damping of piles", Can. Geotech. J., 11(4), 574-598. https://doi.org/10.1139/t74-059.
- Novak, M. and Aboul-Ella, F. (1978), "Impedance functions of piles in layered media", J. Eng. Mech.Div., 104(3), 643-661. https://doi.org/10.1061/JMCEA3.0002366.
- Pacheco, G., Suarez, L.E. and Pando, M. (2008), "Dynamic lateral response of single piles considering soil inertia contributions", Proceedings of the World Conference on Earthquake Engineering, Beijing, China.
- Papathanasiou, S.M., Tsopelas, P., Prapa, E. and Ucak, A. (2016), "Infulence of soil-structure interaction modeling on the response of seismically isolated bridges", Int. J. Bridge Eng., 39-70.
- Phoon, K.K. and Huang, S.P. (2012), "Uncertainty quantification using multi-dimensional hermite polynomials", 1-10. https://doi.org/10.1061/40914(233)12.
- Program, National Cooperative Highway Research (2001), Static and Dynamic Lateral Loading of Pile Groups.
- Qiu, Z., Ebeido, A., Almutairi, A., Lu, J., Elgamal, A., Shing, P.B. and Martin, G. (2020), "Aspects of bridge-ground seismic response and liquefaction-induced deformations", Earthq. Eng. Struct. D., 49(4), 375-393. https://doi.org/10.1002/eqe.3244.
- Rahmani, A., Taiebat, M., Liam Finn, W.D. and Ventura, C.E. (2018), "Evaluation of P-y springs for nonlinear static and seismic soil-pile interaction analysis under lateral loading", Soil Dyn. Earthq. Eng., 115, 438-447. https://doi.org/10.1016/j.soildyn.2018.07.049.
- Rahmani, A., Taiebat, M., Liam Finn, W.D. and Ventura, C.E. (2016), "Evaluation of substructuring method for seismic soil-structure interaction analysis of bridges", Soil Dyn. Earthq. Eng., 90, 112-127. https://doi.org/10.1016/j.soildyn.2016.08.013.
- Rovithis, E.N., Pitilakis, K.D. and Mylonakis, G.E. (2011), "A note on a pseudo-natural SSI frequency for coupled soil-pile-structure systems", Soil Dyn. Earthq. Eng., 31(7), 873-878. https://doi.org/10.1016/j.soildyn.2011.01.006.
- Saitoh, M. (2012), "On the performance of lumped parameter models with gyro-mass elements for the impedance function of a pile-group supporting a single-degree-of-freedom system", Earthq. Eng. Struct. D., 41(4), 623-641. https://doi.org/10.1002/eqe.1147.
- Santisi d'Avila, M.P. and Lopez-Caballero, F. (2018), "Analysis of nonlinear soil-structure interaction effects: 3D frame structure and 1-directional propagation of a 3-component seismic wave", Comput. Struct., 207, 83-94. https://doi.org/10.1016/j.compstruc.2018.02.002.
- Shabani, M.J, Shamsi, M. and Ghanbari, A. (2021a), "Dynamic response of three-dimensional mid-rise buildings adjacent to slope under seismic excitation in the direction perpendicular to the slope", Int. J. Geomech., 21(11), https://doi.org/10.1061/(ASCE)GM.1943-5622.0002158.
- Shabani, M.J., Shamsi, M. and Ghanbari, A. (2021b), "Seismic response of RC moment frame including topography-soil-structure interaction", Practice Periodical on Structural Design and Construction, 26(4), https://doi.org/10.1061/(ASCE)SC.1943-5576.0000625.
- Shabani, M.J., Shamsi, M. and Ghanbari, A. (2021), "Slope topography effect on the seismic response of mid-rise buildings considering topography-soil-structure interaction", Earthq. Struct., 20(2), 187-200. https://doi.org/10.12989/eas.2021.20.2.187.
- Shamsi, M., Zakerinejad, M. and Vakili, A.H. (2021), "Seismic analysis of soil-pile-bridge-train interaction for isolated monorail and railway bridges under coupled lateral-vertical ground motions", Eng. Struct., 248, https://doi.org/10.1016/j.engstruct.2021.113258.
- Shamsi, M. and Ghanbari, A. (2020), "Seismic retrofit of Monorail bridges considering soil-pile-bridge-train interaction", J. Bridge Eng., 25(10), 04020075. https://doi.org/10.1061/(ASCE)BE.1943-5592.00016.
- Shamsi, M., Shabani, M.J. and Vakili, A.H. (2022), "Three-dimensional seismic nonlinear analysis of topography-structure-soil-structure interaction for buildings near slopes", Int. J. Geomech., 22(3), 04021295. https://doi.org/10.1061/(ASCE)GM.1943-5622.000230.
- Shamsi, M., Shabani, M.J.., Zakerinejad, M. and Vakili, A.H. (2022), "Slope topographic effects on the nonlinear seismic behavior of groups of similar buildings", Earthq. Eng. Struct. D., 51(10), 2292-2314. https://doi.org/10.1002/eqe.3664.
- Spyrakos, C.C. (1992), "Seismic behavior of bridge piers including soil-structure interaction", Comput. Struct., 43(2), 373-384. https://doi.org/10.1016/0045-7949(92)90155-S.
- Spyrakos, C.C. (1990), "Assessment of SSI on the longitudinal seismic response short span bridges", Constr. Build. Mater., 4(4), 170-175. https://doi.org/10.1016/0950-0618(90)90036-Z.
- Tongaonkar, N.P. and Jangid, R.S. (2003), "Seismic response of isolated bridges with soil-structure interaction", Soil Dyn. Earthq. Eng., 23(4), 287-302. https://doi.org/10.1016/S0267-7261(03)00020-4.
- Tubaldi, E., Mitoulis, S.A. and Ahmadi, H. (2018), "Comparison of different models for high damping rubber bearings in seismically isolated bridges", Soil Dyn. Earthq. Eng., 104, 329-345. https://doi.org/10.1016/j.soildyn.2017.09.017.
- Ucak, A. and Tsopelas, P. (2008), "Effect of soil-Structure Interaction on Seismic Isolated Bridges", J. Struct. Eng., 134(7), 1154-1164. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1154).
- Wilson, D.W. (1998), "Soil-pile-superstructure interaction in liquefying sand and soft clay", Doctoral Dissertation, University of California, Davis.
- Wolf, J.P. (1985), Dynamic Soil-Structure Interaction, Englewood Cliffs, N.J: Prentice-Hall.
- Xiong, W., Jiang, L.Z. and Li, Y.Z. (2016), "Influence of soil-structure interaction (Structure-to-soil relative stiffness and mass ratio) on the fundamental period of buildings: Experimental observation and analytical verification", Bull. Earthq. Eng., 14(1), 139-160. https://doi.org/10.1007/s10518-015-9814-2.