참고문헌
- Akhtar, S. and Li, B. (2020), "Numerical analysis of pipeline uplift resistance in frozen clay soil considering hybrid tensile-shear yield behaviors", Int. J. Geosynthetics Ground Eng., 6(4), 1-12. https://doi.org/10.1007/s40891-020-00228-9.
- Alzabeebee, S., Zuhaira, A.A. andAl-Hamd, R.K.S. (2022), "Development of an optimized model to compute the undrained shaft friction adhesion factor of bored piles", Geomech. Eng., 28(4), 397-404. https://doi.org/10.12989/gae.2022.28.4.397.
- Andersland, O.B. and Ladanyi, B. (2013), "An introduction to frozen ground engineering", Springer Science & Business Media, https://doi.org/10.1007/978-1-4757-2290-1-3.
- Atkeson, C.G., Moore, A.W. and Schaal, S. (1997), "Locally weighted learning", Lazy learning, 11-73. https://doi.org/10.1007/978-94-017-2053-3.
- Bakermans, L. and Jamieson, B. (2009), "SWarm: A simple regression model to estimate near-surface snowpack warming for back-country avalanche forecasting", Cold Reg. Sci. Technol., 59(2-3), 133-142. https://doi.org/10.1016/j.coldregions.2009.06.003
- Bayram, F. (2012), "Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions", Cold Reg. Sci. Technol., 83, 98-102. https://doi.org/10.1016/j.coldregions.2012.07.003.
- Bean, B., Maguire, M. and Sun, Y. (2019), "Comparing design ground snow load prediction in Utah and Idaho", J. Cold Reg. Eng., 33(3), 04019010. https://doi.org/10.1061/(ASCE)CR.1943-5495.000019.
- Bishop, C.M. (1995), "Neural networks for pattern recognition", Oxford University Press. https://dl.acm.org/doi/10.5555/525960.
- Breiman, L. (1996), "Bagging predictors", Machine learning, 24(2), 123-140. https://doi.org/10.1007/BF0005865.
- Breiman, L. (2001), "Random forests", Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
- Chai, M., Zhang, H., Zhang, J. and Zhang, Z. (2017), "Effect of cement additives on unconfined compressive strength of warm and ice-rich frozen soil", Constr. Build. Mater., 149, 861-868. https://doi.org/10.1016/j.conbuildmat.2017.05.202.
- Chen, T., Morris, J. and Martin, E. (2007), "Gaussian process regression for multivariate spectroscopic calibration", Chemometrics and Intelligent Laboratory Systems, 87(1), 59-71. https://doi.org/10.1016/j.chemolab.2006.09.004
- Dehghanbanadaki, A., Rashid, A.S.A., Ahmad, K., Yunus, N.Z. M. and Said, K.N.M. (2022), "A computational estimation model for the subgrade reaction modulus of soil improved with DCM columns", Geomech. Eng., 28(4), 385-396. https://doi.org/10.12989/gae.2022.28.4.385.
- Deka, P.C. (2014), "Support vector machine applications in the field of hydrology: a review", Appl. Soft Comput., 19, 372-386. https://doi.org/10.1016/j.asoc.2014.02.002.
- Dawei, Y., Bing, Z., Bingbing, G., Xibo, G. and Razzaghzadeh, B. (2023), "Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models", Struct. Eng. Mech., 86(5), 673-686. https://doi.org/10.12989/sem.2023.86.5.673.
- Dinarvand, R. and Ardakani, A. (2022), "Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling", Geomech. Eng., 28(5), 505-520. https://doi.org/10.12989/gae.2022.28.5.505.
- Esmaeili-Choobar, N., Esmaeili-Falak, M., Roohi-hir, M. and Keshtzad, S. (2013), "Evaluation of collapsibility potential at Talesh, Iran", Electronic J. Geotech. Eng., 18, 2561-2573.
- Esmaeili-Falak, M. and Hajialilue-Bonab, M. (2012), "Numerical studying the effects of gradient degree on slope stability analysis using limit equilibrium and finite element methods", Int. J. Academic Res., 4(6), 216-222. https://doi.org/10.7813/2075-4124.2012/4-4/A.30
- Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "Experimental study of the mechanical behavior of frozen soils-A case study of Tabriz subway", Periodica Polytechnica Civil Eng., 62(1), 117-125. https://doi.org/10.3311/PPci.10960.
- Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Reg. Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
- Esmaeili-Falak, M. and Sarkhani Benemaran, R. (2023), "Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles", Geomech. Eng., 32(6), 583-600. https://doi.org/10.12989/gae.2023.32.6.583.
- Esmaeili-Falak, M. and Sarkhani Benemaran, R. (2022), "Investigating the stress-strain behavior of frozen clay using triaxial test", J. Struct. Constr. Eng., https://doi.org/10.22065/JSCE.2022.332406.2747.
- Fei, W. and Yang, Z.J. (2019), "Modeling unconfined compression behavior of frozen Fairbanks silt considering effects of temperature, strain rate and dry density", Cold Reg. Sci. Technol., 158, 252-263. https://doi.org/10.1016/j.coldregions.2018.09.002.
- Frank, E. and Witten, I.H. (1998), "Generating accurate rule sets without global optimization", https://dl.acm.org/doi/10.5555/645527.657305
- Friedman, J.H. (2001), "Greedy function approximation: a gradient boosting machine", Annals Statistics, 1189-1232. https://doi.org/10.1214/aos/1013203451.
- Friedman, J.H. and Meulman, J.J. (2003), "Multiple additive regression trees with application in epidemiology", Stat. Med., 22(9), 1365-1381. https://doi.org/10.1002/sim.1501.
- Fu, H., Zhang, J., Huang, Z., Shi, Y. and Chen, W. (2018), "A statistical model for predicting the triaxial compressive strength of transversely isotropic rocks subjected to freeze-thaw cycling", Cold Reg. Sci. Technol., 145, 237-248. https://doi.org/10.1016/j.coldregions.2017.11.003.
- Ge, D.M., Zhao, L.C. and Esmaeili-Falak, M. (2022), "Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models", J. Sustain. Cement-Based Mater., 1-19. https://doi.org/10.1080/21650373.2022.2093291.
- Goughnour, R.R. and Andersland, O.B. (1968), "Mechanical properties of a sand-ice system", J Soil Mech. Found. Division, 94(4), 923-950. https://doi.org/10.1061/JSFEAQ.0001179.
- Habibagahi, G., Katebi, S. and Johari, A. (2020), "A neural network framework for unsaturated soils", Unsaturated Soils for Asia, 107-111.
- Holmes, G., Hall, M. and Prank, E. (1999), "Generating rule sets from model trees", Proceedings of the Australasian joint conference on artificial intelligence, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46695-9-1
- Hou, C., Zhu, W., Yan, B., Guan, K. and Du, J. (2020), "The effects of temperature and binder content on the behavior of frozen cemented tailings backfill at early ages", Constr. Build. Mater., 239, 117752. https://doi.org/10.1016/j.conbuildmat.2019.117752.
- Huang, S., Guo, Y., Liu, Y., Ke, L. and Liu, G. (2018), "Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing", Appl. Therm. Eng., 135, 435-445. https://doi.org/10.1016/j.applthermaleng.2018.02.090.
- Jamshidi, A., Nikudel, M.R. and Khamehchiyan, M. (2013), "Predicting the long-term durability of building stones against freeze-thaw using a decay function model," Cold Reg. Sci. Technol., 92, 29-36. https://doi.org/10.1016/j.coldregions.2013.03.007.
- Johari, A. and Fooladi, H. (2020), "Comparative study of stochastic slope stability analysis based on conditional and unconditional random field", Comput. Geotech., 125, 103707. https://doi.org/10.1016/j.compgeo.2020.103707.
- Johari, A. and Fooladi, H. (2022), "Simulation of the conditional models of borehole's characteristics for slope reliability assessment", Transport. Geotech., 100778. https://doi.org/10.1016/j.trgeo.2022.100778.
- Johari, A. and Golkarfard, H. (2018), "Reliability analysis of unsaturated soil sites based on fundamental period throughout Shiraz, Iran", Soil Dyn. Earthq. Eng., 115, 183-197. https://doi.org/10.1016/j.soildyn.2018.08.012.
- Johari, A., Golkarfard, H., Davoudi, F. and Fazeli, A. (2021a), "A predictive model based on the experimental investigation of collapsible soil treatment using nano-clay in the Sivand Dam region, Iran", Bull. Eng. Geol. Environ., 80(9), 6725-6748. https://doi.org/10.1007/s10064-021-02360-w.
- Johari, A., Habibagahi, G. and Ghahramani, A. (2006), "Prediction of soil-water characteristic curve using genetic programming", J. Geotech. Geoenviron. Eng., 132(5), 661-665. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(661).
- Johari, A., Habibagahi, G. and Ghahramani, A. (2011), "Prediction of SWCC using artificial intelligent systems: A comparative study", Scientia Iranica, 18(5), 1002-1008. https://doi.org/10.1016/j.scient.2011.09.002.
- Johari, A., Heydari, A. and Talebi, A. (2021b), "Prediction of discharge flow rate beneath sheet piles using scaled boundary finite element modeling database", Scientia Iranica, 28(2), 645-655. https://doi.org/10.24200/SCI.2020.53281.3158.
- Kim, Y., Hong, J., Shin, J. and Kim, B. (2022), "Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques", Geomech. Eng., 29(3), 249-258. https://doi.org/10.12989/gae.2022.29.3.249.
- Kotilainen, M., Vanhatalo, J., Suominen, M. and Kujala, P. (2017), "Predicting ice-induced load amplitudes on ship bow conditional on ice thickness and ship speed in the Baltic Sea", Cold Reg. Sci. Technol., 135, 116-126. https://doi.org/10.1016/j.coldregions.2016.12.006.
- Kwak, N.S. and Ko, T.Y. (2022), "Machine learning-based regression analysis for estimating Cerchar abrasivity index", Geomech. Eng., 29(3), 219-228. https://doi.org/10.12989/gae.2022.29.3.219.
- Lawal, A.I., Kwon, S., Aladejare, A.E. and Oniyide, G.O. (2022), "Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods", Geomech. Eng., 28(3), 313-324. https://doi.org/10.12989/gae.2022.28.3.313.
- Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Ali, H. F.H., Ibrahim, H.H. and Rashidi, S. (2022a), "Forecasting tunnel path geology using Gaussian process regression", Geomech. Eng., 28(4), 359-374. https://doi.org/10.12989/gae.2022.28.4.359.
- Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Ibrahim, H.H., Ali, H.F.H., Nejati, H.R. and Rashidi, S. (2022b), "Prediction of duration and construction cost of road tunnels using Gaussian process regression", Geomech. Eng., 28(1), 65-75. https://doi.org/10.12989/gae.2021.28.1.065.
- Misra, S. and Li, H. (2019), "Noninvasive fracture characterization based on the classification of sonic wave travel times", Machine Learning for Subsurface Characterization, 243-287. https://doi.org/10.1016/C2018-0-01926-X.
- Mohan L,G., Rasheed, D.K. and Zachariah Koshy, D. (2019), "Experimental investigation on shear strength of artificially frozen C-Phi soil", Int. J. Adv. Res. Eng. Technol., 10(3). https://doi.org/10.34218/IJARET.10.3.2019.005.
- Moradi, G., Hassankhani, E. and Halabian, A.M. (2022), "Experimental and numerical analyses of buried box culverts in trenches using geofoam", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 175(3), 311-322. https://doi.org/10.1680/jgeen.19.00288
- Morgan, J.N. and Sonquist, J.A. (1963), "Problems in the analysis of survey data, and a proposal", J. Am. Stat. Association, 58(302), 415-434. https://doi.org/10.2307/2283276.
- Nassr, A., Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "A new approach to modeling the behavior of frozen soils," Eng. Geol., 246, 82-90. https://doi.org/10.1016/j.enggeo.2018.09.018.
- Omran, B.A., Chen, Q. and Jin, R. (2016), "Comparison of data mining techniques for predicting compressive strength of environmentally friendly concrete", J. Comput Civil Eng., 30(6), 04016029. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000596.
- Platt, J. (1998), "Sequential minimal optimization: A fast algorithm for training support vector machines".
- Quinlan, J.R. (1992), "Learning with continuous classes", Proceedings of the 5th Australian joint conference on artificial intelligence, 92, 343-348. https://doi.org/10.1142/9789814536271.
- Rao, S.B. (1986), "Tool wear monitoring through the dynamics of stable turning". https://doi.org/10.1115/1.3187062
- Sarkhani Benemaran, R., Esmaeili-Falak, M. and Javadi, A. (2022), "Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimized models", Int. J. Pavement Eng., 1-19. https://doi.org/10.1080/10298436.2022.2095385.
- Sarkhani Benemaran, R., Esmaeili-Falak, M. andKatebi, H. (2022), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 175(5), 523-538. https://doi.org/10.1680/jgeen.20.00152.
- Soquist, J.N. and Morgabn, J.N. (1964), "The detection of interaction effects", 35. Survey Research Center, Institute for Social Research, University of Michigan.
- Sun, Q. and Liu, C. (2022), "Near-explosion protection method of π-section reinforced concrete beam", Geomech. Eng., 28(3), 209-224. https://doi.org/10.12989/gae.2022.28.3.209.
- Torok, A., Ficsor, A., Davarpanah, M. and Vasarhelyi, B. (2019), "Comparison of mechanical properties of dry, Saturated and frozen porous rocks", Proceedings of the IAEG/AEG Annual Meeting Proceedings, San Francisco, California, Springer, Cham, 6, 113-118. https://doi.org/10.1007/978-3-319-93142-5-16
- Vahdani, M., Ghazavi, M. and Roustaei, M. (2020), "Prediction of mechanical properties of frozen soils using response surface method: An optimization Approach", Int. J. Eng., 33(10), 1826-1841. https://doi.org/10.5829/IJE.2020.33.10A.02.
- Van Eck, N.A. (1980), "Statistical analysis and data management highlights of OSIRIS IV", The American Statistician, 34(2), 119-121. https://doi.org/10.1016/0167-9473(83)90066-X .
- Vanthienen, J. and Wets, G. (1994), "From decision tables to expert system shells", Data & Knowledge Eng., 13(3), 265-282. https://doi.org/10.1016/0169-023X(94)00020-4.
- Vapnik, V. (2013), "The nature of statistical learning theory", Springer Science & Business Media. https://doi.org/10.1007/978-1-4757-3264-1
- Wang, B. and Chen, T. (2015), "Gaussian process regression with multiple response variables", Chemometrics and Intelligent Laboratory Systems, 142, 159-165. https://doi.org/10.1016/j.chemolab.2015.01.016.
- Wang, T., Ma, H., Liu, J., Luo, Q., Wang, Q. and Zhan, Y. (2021), "Assessing frost heave susceptibility of gravelly soils based on multivariate adaptive regression splines model", Cold Reg. Sci. Technol., 181, 103182. https://doi.org/10.1016/j.coldregions.2020.103182.
- Witten, I.H., Frank, E., Hall, M.A. and Pal, C.J. (2005), "Practical machine learning tools and techniques", Morgan Kaufmann, 578. https://doi.org/10.1016/C2009-0-19715-5 .
- Wood, D.M. (2003), "Geotechnical modelling (Vol. 1). CRC press. https://doi.org/10.1201/9781315273556.
- Yan, Y. (2022), "Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach", Geomech. Eng., 28(5), 477-491. https://doi.org/10.12989/gae.2022.28.5.477.
- Yang, X., You, Z., Hiller, J. and Watkins, D. (2017), "Correlation analysis between temperature indices and flexible pavement distress predictions using mechanistic-empirical design", J. Cold Reg. Eng., 31(4), 04017009. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000135.
- on existing tunnels", Comput. Geotech., 121, 103477. https://doi.org/10.1016/j.compgeo.2020.103477.
- Zhang, G., Chen, C., Zhang, Y., Zhao, H., Wang, Y. and Wang, X. (2022), "Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil", Geomech. Eng., 28(6), 599-611. https://doi.org/10.12989/gae.2022.28.6.599.
- Zhu, Y., Huang, L., Zhang, Z. and Bayrami, B. (2022), "Estimation of splitting tensile strength of modified recycled aggregate concrete using hybrid algorithms", Steel Compos. Struct., 44(3), 375-392. https://doi.org/10.12989/scs.2022.44.3.389.