DOI QR코드

DOI QR Code

The drained deformation characteristics of sand subjected to lateral cyclic loading

  • Junhua Xiao (Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University) ;
  • Jiapei Ma (Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University) ;
  • Jianfeng Xue (School of Engineering and Information Technology, University of New South Wales) ;
  • Zhiyong Liu (Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University) ;
  • Yingqi Bai (Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University)
  • 투고 : 2023.05.07
  • 심사 : 2023.07.14
  • 발행 : 2023.09.10

초록

Drained cyclic triaxial tests were conducted on a saturated sand to examine its deformation characteristics under either axial or lateral cyclic loading condition. To apply lateral cyclic loading, the cell pressure was cycled while maintaining a constant vertical stress. The strain accumulations and flow direction in the soil were presented and discussed considering various initial stress ratios (η0), cyclic stress amplitudes and cyclic stress paths. The results indicate that axial strain accumulation shows an exponential increase with the maximum stress ratio (ηmax). The initial deviatoric stress has comparable effects with lateral cyclic stress amplitude on the accumulated axial strain. In contrast, the accumulated volumetric strain is directly proportional to the lateral cyclic stress amplitude but not much affected by η0 values. Due to the anisotropy of the soil, the accumulated axial and lateral bulging strains are greater in lateral cyclic loading when compared to axial cyclic loading even though ηmax is the same. It is also found that ηmax affects soil's lateral deformation and increasing the ratio could change the lateral deformation from contraction to bulging. The flow direction depends on ηmax in the sand under lateral cyclic loading, regardless of η0 values and the cyclic stress amplitudes, and a large ηmax could lead to great deviatoric strain but a little volumetric strain accumulation.

키워드

과제정보

The project is sponsored by Shanghai Sailing Program (No. 23YF1449100) and National Natural Science Foundation of China (No. U203420055).

참고문헌

  1. Achmus, M., Kuo, Y.S. and Abdel, Rahman.K. (2009), "Behavior of monopile foundations under cyclic lateral load", Comput. Geotech., 36(5), 725-735. https://doi.org/10.1016/j.compgeo.2008.12.003.
  2. Banerjee, S. and Shirole, O.N. (2014), "Numerical analysis of piles under cyclic lateral load", Indian Geotech. J., 44, 436-448. https://doi.org/10.1007/s40098-013-0092-0.
  3. Chen, X., Zhang, X., Zhang, Y., Ding, M. and Wang, Y. (2020), "Hysteretic behaviors of pile foundation for railway bridges in loess", Geomech. Eng., 20(4), 323-331. https://doi.org/10.12989/gae.2020.20.4.323.
  4. Chen, C., Zhou, Z.M., Kong, L.W., Zhang, X.W. and Yin, S. (2018), "Undrained dynamic behaviour of peaty organic soil under long-term cyclic loading, Part I: Experimental investigation", Soil Dyn. Earthq. Eng., 107, 279-291. https://doi.org/10.1016/j.soildyn.2018.01.012.
  5. Garcia-Rojo, R. and Herrmann, H.J. (2005), "Shakedown of unbound granular material", Granular Matter, 7(2-3), 109-118. https://doi.org/10.1007/s10035-004-0186-6.
  6. Giannakos, S., Gerolymos, N. and Gazetas, G. (2012), "Cyclic lateral response of piles in dry sand: finite element modeling and validation", Comput. Geotech., 44, 116-131. https://doi.org/10.1016/j.compgeo.2012.03.013.
  7. Igoe, D. and Gavin, K. (2021), "Investigation of cyclic loading of aged piles in sand", J. Geotech. Geoenviron., 147(4), 04021011. https://orcid.org/0000-0003-3283-2947.
  8. Liu, Z., Qian, J., Yaghoubi, M. and Xue, J. (2021a), "The effects of initial static deviatoric stress on liquefaction and pre-failure deformation characteristics of saturated sand under cyclic loading", Soil Dyn. Earthq. Eng., 140, 106870. https://doi.org/10.1016/j.soildyn.2021.106870.
  9. Liu, Z., Xue, J. and Ye, J. (2021b), "The effects of unloading on drained cyclic behaviour of Sydney sand", Acta Geotech., 16, 2791-2804. https://doi.org/10.1007/s11440-021-01209-6.
  10. Liu, Z. and Xue, J. (2022), "The deformation behaviour of an anisotropically consolidated kaolin clay under lateral cyclic loading", Mar. Georesour. Geotec., 40(12), 1446-1452. https://doi.org/10.1080/1064119X.2021.2002986.
  11. Liu, Z., Xiao, J., Xue, J. and Liu M. (2023), "The effects of changing the deviatoric and spherical stresses during cyclic loading on the drained response of a sand", Can. Geotech. J., Just-in. https://doi.org/10.1139/cgj-2022-0575
  12. Ma, L., Wang, Y., Wang, W., Xu, X. and Li, S. (2018), "An analysis method for nearshore laterally loaded rigid pile in cohesive soil", Mar. Georesour. Geotec., 36(1), 2-9. https://doi.org/10.1080/1064119X.2016.1255689.
  13. Nong, Z., Park, S.S., Jeong, S.W. and Lee, D.E. (2020), "Effect of cyclic loading frequency on liquefaction prediction of sand", Appl. Sci., 10(13), 4502. https://doi.org/10.3390/app10134502.
  14. Nong, Z. and Park, S.S. (2021), "Effect of loading frequency on volumetric strain accumulation and stiffness improvement in sand under drained cyclic direct simple shear tests", J. Geotech. Geoenviron. Eng., 147(12), 04021159. https://doi.org/10.1061/(ASCE)GT.1943-5606.
  15. Pan, K., Xu, T., Liao, D. and Yang, Z. (2022), "Failure mechanisms of sand under asymmetrical cyclic loading conditions: experimental observation and constitutive modelling", Geotechnique, 72(2), 162-175. https://doi.org/10.1680/jgeot.20.P.004.
  16. Pan, K. and Yang, Z. (2018), "Effects of initial static shear on cyclic resistance and pore pressure generation of saturated sand", Acta Geotech., 13(2), 473-487. https://doi.org/10.1007/s11440-017-0614-5.
  17. Qian, J., Li, S., Zhang, J., Jiang, J. and Wang, Q. (2019), "Effects of OCR on monotonic and cyclic behavior of reconstituted Shanghai silty clay", Soil Dyn. Earthq. Eng., 118, 111-119. https://doi.org/10.1016/j.soildyn.2018.12.010.
  18. Shi, J., Zhang, Y., Chen, L. and Fu, Z. (2018), "Response of a laterally loaded pile group due to cyclic loading in clay", Geomech. Eng., 16(5), 463-469. https://doi.org/10.12989/gae.2018.16.5.463.
  19. Wang, J., Wu, L., Cai, Y., Guo, L., Du, Y., Gou, C., Ni, J. and Gao, Z. (2021a), "Monotonic and cyclic characteristics of K0- Consolidated saturated soft clay under a stress path involving a variable confining pressure", Acta Geotech., 16, 1161-1174. https://doi.org/10.1007/s11440-020-01031-6.
  20. Wang, Y., Wan. Y., Ruan, H., Yu, X., Shao, J. and Ren, D. (2021b), "Pore pressure accumulation of anisotropically consolidated soft clay subjected to complex loads under different stress paths", China Ocean Eng., 35(3), 465-474. https://doi.org/10.1007/s13344-021-0043-y.
  21. Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2005), "Strain accumulation in sand due to cyclic loading: drained triaxial tests", Soil Dyn. Earthq. Eng., 25(12), 967-979. https://doi.org/10.1016/j.soildyn.2005.02.022.
  22. Wichtmann, T., Niemunis, A. and Triantafyllidis, T. (2014), "Flow rule in a high-cycle accumulation model backed by cyclic test data of 22 sands", Acta Geotech., 9(4), 695-709. https://doi.org/10.1007/s11440-014-0302-7.
  23. Xiong, H., Guo, L., Cai, Y. and Yang, Z. (2016), "Experimental study of drained anisotropy of granular soils involving rotation of principal stress direction", Eur. J. Environ. Civ. En., 20(4), 431-454. https://doi.org/10.1080/19648189.2015.1039662.
  24. Yan, Z., Zhang, H.Q., Xie, M.X. and Han, R.R. (2021), "Centrifuge bearing behaviors of batter-piled wharf under lateral cyclic loading", Ocean Eng., 226, 108824. https://doi.org/10.1016/j.oceaneng.2021.108824.
  25. Yang, Z., Li, X. and Yang, J. (2008), "Quantifying and modelling fabric anisotropy of granular soils", Geotechnique, 58(4), 237-248. https://doi.org/10.1680/geot.2008.58.4.237.
  26. Youd, T.L. (1972), "Compaction of sands by repeated shear straining", J. Soil. Mech. Found. Div. ASCE 98(7), 709-725. https://doi.org/10.1061/JSFEAQ.0001762.