DOI QR코드

DOI QR Code

Mechanism of strength damage of red clay roadbed by acid rain

  • Guiyuan Xiao (Key Laboratory of Geotechnics of Guangxi, Guilin University of Technology) ;
  • Jian Wang (Key Laboratory of Geotechnics of Guangxi, Guilin University of Technology) ;
  • Le Yin (Guangxi Zhuang Autonomous Region company of China National Tobacco Corporation ) ;
  • Guangli Xu (College of Engineering, China University of Geosciences) ;
  • Wei Liu (Shiyan City Natural Resources and Planning Bureau)
  • Received : 2023.04.26
  • Accepted : 2023.06.23
  • Published : 2023.09.10

Abstract

Acid rain of soils has a significant impact on mechanical properties. An X-ray diffraction test, scanning electron microscope (SEM) test, laser particle size analysis test, and triaxial unconsolidated undrained (UU) test were carried out in red clay soils with different compaction degrees under the effect of different concentrations of acid. The experiments demonstrated that: the dissolution effect of acid rain on colluvium weakened with the increase in the compacting degree under the condition of certain pH values, i.e., the damage to the structure of red clay soil was relatively light, where the number of newly increased pores in the soil decreased and the agglomeration of soil particles increased; for the same compacting degree, the structural gap decreased, and the agglomeration increased with the increase in the pH value (acidity decreases) of the acid rain; the dissolution rate of Si, Al, Fe, and other elemental minerals and cement in red clay soil was found to be higher under the effect of acid rain, in turn destroying the original structure of the soil body and producing a large number of pores. This is macroscopically expressed as the decrease of the soil cohesion and internal friction angle, thereby reducing the shear strength of the soil body.

Keywords

Acknowledgement

The authors thank Mr. Yukai fang for assisting with the SEM measurements.

References

  1. An, R., Kong, L., Zhang, X. and Li, C. (2022), "Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography", J. Rock Mech Geotech Eng., 14(3), 851-860. https://doi.org/10.1016/j.jrmge.2021.10.004.
  2. Bakhshipour, Z., Asadi, A., Huat, B.B., Sridharan, A. and Kawasaki, S. (2016), "Effect of acid rain on geotechnical properties of residual soils", Soils Found., 56(6), 1008-1020. https://doi:10.1016/j.sandf.2016.11.006.
  3. Cay S. (2023), "Assessment of tea saponin and citric acid-assisted phytoextraction of Pb-contaminated soil by Salvia virgata Jacq", Environ. Sci. Pollut. Res. Int., 30(17), 49771-49778. https://doi:10.1007/S11356-023-25809-9.
  4. Dafalla, M., Shaker, A., Elkady, T., Almajed, A. and Al, S.M. (2020), "Shear strength characteristics of a sand clay liner", Sci. Rep., 10(1), 18226. https://doi:10.1038/s41598-020-75188-1.
  5. Delage, P. and Lefebvre, G. (1984), "Study of the structure of a sensitive Champlain clay and of its evolution during consolidation", CA Geotech. J., 21(1), 21-35. https://doi.org/10.1139/t84-003.
  6. Dudoignon, P., Pantet, A., Carrara, L. and Velde, B. (2001), "Macro-micro measurement of particle arrangement in sheared kaolinitic matrices", Geotechnique, 51(6), 493-499. https://doi.org/10.1680/geot.2001.51.6.493.
  7. Gidigasu, M.D. (1972), "Mode of formation and geotechnical characteristics of laterite materials of Ghana in relation to soil forming factors", Eng. Geol., 6(2), 79-150. https://doi.org/10.1016/0013-7952(72)90034-8.
  8. Gratchev, I. and Towhata, I. (2013), "Stress-strain characteristics of two natural soils subjected to long-term acidic contamination", Soils Found., 53(3), 469-476. https://doi.org/10.1016/j.sandf.2013.04.008.
  9. Guo, Y., Ni, W. and Liu, H. (2021), "Effects of dry density and water content on compressibility and shear strength of loess", Geomech. Eng., 24(5), 419-430. https://doi.org/10.12989/gae.2021.24.5.419.
  10. Hassanlourad, M., Khatami, M.H. and Ahmadi, M.M. (2017), "Effects of sulphuric acid pollutant on the shear behaviour and strength of sandy soil and sand mixed with bentonite clay," Int. J. Geotech. Eng., 11(2), 114-119. https://doi:10.1080/19386362.2016.1193662.
  11. Jahangir, A, and Koupai, M. (2020), "Effect of pore water pH on mechanical properties of clay soil", Bull. Eng. Geol. Environ., 79(1), 1461-1469. https://doi:10.1007/s10064-019-01611-1.
  12. Jin, P., Zhen, W., Chen, B., Sun, D.A., Gao, Y. and Xiong, Y. (2021), "Effect of microstructure on water retention behavior of lateritic clay over a wide suction range", Geomech. Eng., 25(5), 417-428. https://doi.org/10.12989/gae.2021.25.5.417.
  13. Liu W., Song, X., Huang, F. and Hu, L. (2019), "Experimental study on the disintegration of granite residual soil under the combined influence of wetting-drying cycles and acid rain", Geomat. Nat. Hazards Risk, 10(1), 1912-1927. https://doi:10.1080/19475705.2019.1651407.
  14. Madu, R.M. (1977), "An investigation into the geotechnical and engineering properties of some laterites of Eastern Nigeria", Eng. Geol., 11(2), 101-125. https://doi.org/10.1016/0013-7952(77)90022-9.
  15. Ola, S.A. (1980), "Mineralogical properties of some nigerian residual soils in relation with building problems", Eng. Geol., 15(1), 1-13. https://doi.org/10.1016/0013-7952(80)90027-7.
  16. Wan, Z., Guo, A. and Tan, Y. (2011), "Research on filling technologyof red clay embankmet in southwest Hunan", Geotech. Mech., 32(8), 2281-2286. https://doi.org/10.4028/www.scientific.net/AMR.291-294.2281.
  17. Wang, J., Lv, X. and Qu, X. (2019a), "Relationship between shear strength of roadbed soils and chemical and mineral composition", J. Jilin Univ. (Eng. Ed.), 49(3), 766-772.
  18. Wang, Y., Tang, L. and Liu, L. (2021), "Removal behaviors of Cu and Pb from heavy metal contaminated silts flushed by citric acid", Geomech. Eng., 26(5), 489-497. https://doi.org/10.12989/gae.2021.26.5.489.
  19. Wei, Y.Z., Yao, Z.H., Chong, X., Zhang, J.H. and Zhang, J. (2022), "Microstructure of unsaturated loess and its influence on strength characteristics", Sci. Rep., 12(1), 1502. https://doi:10.1038/S41598-022-05464-9.
  20. Yang, Z., Ding, P. and Yu, D. (2019), "Shear strength model of Yan'an loess based on porosity", J. Mountain Sci., 37(3), 392-399.
  21. Zhang, Y., Li, J. and Tan, J. (2023), "An overview of the direct and indirect effects of acid rain on plants: Relationships among acid rain, soil, microorganisms, and plants", Sci. Total Environ., 873, 162388. https://doi:10.1016/J.SCITOTENV.2023.162388.