Skeletal Manifestations of Inborn Errors of Metabolism: A Comprehensive Retrospect

선천성 대사 이상 질환에서의 골격계 증상 발현

  • Sung Yoon Cho (Department of Pediatrics, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 조성윤 (삼성서울병원 소아청소년과학교실)
  • Published : 2023.06.30

Abstract

Inborn errors of metabolism encompass a wide variety of disorders, frequently affecting bone. This review presents a comprehensive retrospect on the primary involvement of bone in inborn errors of metabolism. Primary involvement of bone in inborn errors of metabolism includes entities that primarily affect the bone marrow, mineral component or cartilage. These include lysosomal storage disorders, hypophosphatasia, and hereditary hypophosphatemic rickets. In this review, we discuss the primary involvement of bone in inborn errors of metabolism (hypophosphatasia, X-linked hypophosphatemic rickets, Gaucher disease, and mucopolysaccharidoses) along with the therapeutic agents used in clinical settings, diagnostic strategies, and general management. With the development of disease-specific targeted therapies and supportive care, more number of patients with these disorders live longer and survive into adulthood. Moreover, skeletal symptoms have become a more prominent feature of these disorders. This makes the awareness of these skeletal symptoms more important.

Keywords

References

  1. Dussault PM, Lazzari AA. Epilepsy and osteoporosis risk. Curr Opin Endocrinol Diabetes Obes 2017;24:395-401.  https://doi.org/10.1097/MED.0000000000000366
  2. van Karnebeek CDM, Wortmann SB, Tarailo-Graovac M, Langeveld M, Ferreira CR, van de Kamp JM, et al. The role of the clinician in the multi-omics era: are you ready? J Inherit Metab Dis 2018;41:571-82.  https://doi.org/10.1007/s10545-017-0128-1
  3. Williams N, Challoumas D, Ketteridge D, Cundy PJ, Eastwood DM. The mucopolysaccharidoses: advances in medical care lead to challenges in orthopaedic surgical care. Bone Joint J 2017;99-b:1132-9.  https://doi.org/10.1302/0301-620X.99B9.BJJ-2017-0487
  4. Cimaz R, Vijay S, Haase C, Coppa GV, Bruni S, Wraith E, et al. Attenuated type I mucopolysaccharidosis in the differential diagnosis of juvenile idiopathic arthritis: a series of 13 patients with Scheie syndrome. Clin Exp Rheumatol 2006;24:196-202. 
  5. Mikosch P, Hughes D. An overview on bone manifestations in Gaucher disease. Wien Med Wochenschr 2010;160:609-24.  https://doi.org/10.1007/s10354-010-0841-y
  6. Fonta C, Salles JP. Neuromuscular features of hypophosphatasia. Arch Pediatr 2017;24:5s85-5s8. 
  7. Millan JL, Whyte MP. Alkaline Phosphatase and Hypophosphatasia. Calcif Tissue Int 2016;98:398-416.  https://doi.org/10.1007/s00223-015-0079-1
  8. Conti F, Ciullini L, Pugliese G. Hypophosphatasia: clinical manifestation and burden of disease in adult patients. Clin Cases Miner Bone Metab 2017;14:230-4.  https://doi.org/10.11138/ccmbm/2017.14.1.230
  9. Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 2012;366:904-13.  https://doi.org/10.1056/NEJMoa1106173
  10. Whyte MP, Madson KL, Phillips D, Reeves AL, McAlister WH, Yakimoski A, et al. Asfotase alfa therapy for children with hypophosphatasia. JCI Insight 2016;1:e85971. 
  11. Kim I, Noh ES, Kim MS, Jang JH, Jeon TY, Choi HW, et al. Six-year clinical outcomes of enzyme replacement therapy for perinatal lethal and infantile hypophosphatasia in Korea: Two case reports. Medicine (Baltimore) 2023;102:e32800. 
  12. Michigami T, Ohata Y, Fujiwara M, Mochizuki H, Adachi M, Kitaoka T, et al. Clinical Practice Guidelines for Hypophosphatasia. Clin Pediatr Endocrinol 2020;29:9-24.  https://doi.org/10.1297/cpe.29.9
  13. Kawahara T, Watanabe H, Omae R, Yamamoto T, Inazu T. A Novel PHEX Mutation in Japanese Patients with X-Linked Hypophosphatemic Rickets. Case Rep Genet 2015;2015:301264. 
  14. Jagtap VS, Sarathi V, Lila AR, Bandgar T, Menon P, Shah NS. Hypophosphatemic rickets. Indian J Endocrinol Metab 2012;16:177-82.  https://doi.org/10.4103/2230-8210.93733
  15. Brodehl J. Assessment and interpretation of the tubular threshold for phosphate in infants and children. Pediatr Nephrol 1994;8:645. 
  16. Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect 2014;3:R13-30.  https://doi.org/10.1530/EC-13-0103
  17. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res 2011;26:1381-8.  https://doi.org/10.1002/jbmr.340
  18. Morey M, Castro-Feijoo L, Barreiro J, Cabanas P, Pombo M, Gil M, et al. Genetic diagnosis of X-linked dominant Hypophosphatemic Rickets in a cohort study: tubular reabsorption of phosphate and 1,25 (OH)2D serum levels are associated with PHEX mutation type. BMC Med Genet 2011;12:116. 
  19. Barneveld RA, Keijzer W, Tegelaers FP, Ginns EI, Geurts van Kessel A, Brady RO, et al. Assignment of the gene coding for human beta-glucocerebrosidase to the region q21-q31 of chromosome 1 using monoclonal antibodies. Hum Genet 1983;64:227-31.  https://doi.org/10.1007/BF00279398
  20. Kaplan P, Andersson HC, Kacena KA, Yee JD. The clinical and demographic characteristics of nonneuronopathic Gaucher disease in 887 children at diagnosis. Arch Pediatr Adolesc Med 2006;160:603-8.  https://doi.org/10.1001/archpedi.160.6.603
  21. Gupta N, Oppenheim IM, Kauvar EF, Tayebi N, Sidransky E. Type 2 Gaucher disease: phenotypic variation and genotypic heterogeneity. Blood Cells Mol Dis 2011;46:75-84.  https://doi.org/10.1016/j.bcmd.2010.08.012
  22. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., eds. GeneReviews(®): Copyright © 1993-2023, University of Washington, Seattle., 1993. 
  23. Wenstrup RJ, Roca-Espiau M, Weinreb NJ, Bembi B. Skeletal aspects of Gaucher disease: a review. Br J Radiol 2002;75 Suppl 1:A2-12.  https://doi.org/10.1259/bjr.75.suppl_1.750002
  24. Pastores GM, Patel MJ, Firooznia H. Bone and joint complications related to Gaucher disease. Curr Rheumatol Rep 2000;2:175-80.  https://doi.org/10.1007/s11926-000-0059-x
  25. Cohen IJ. Bone crises in Gaucher disease. Isr Med Assoc J 2003;5:838-9. 
  26. Vellodi A, Tylki-Szymanska A, Davies EH, Kolodny E, Bembi B, Collin-Histed T, et al. Management of neuronopathic Gaucher disease: revised recommendations. J Inherit Metab Dis 2009;32:660-4.  https://doi.org/10.1007/s10545-009-1164-2
  27. Mistry PK, Sadan S, Yang R, Yee J, Yang M. Consequences of diagnostic delays in type 1 Gaucher disease: the need for greater awareness among hematologists-oncologists and an opportunity for early diagnosis and intervention. Am J Hematol 2007;82:697-701.  https://doi.org/10.1002/ajh.20908
  28. Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford) 2011;50 Suppl 5:v4-12.  https://doi.org/10.1093/rheumatology/ker394
  29. Spranger J. Bone dysplasia 'families'. Pathol Immunopathol Res 1988;7:76-80.  https://doi.org/10.1159/000157098
  30. Guarany NR, Schwartz IV, Guarany FC, Giugliani R. Functional capacity evaluation of patients with mucopolysaccharidosis. J Pediatr Rehabil Med 2012;5:37-46.  https://doi.org/10.3233/PRM-2012-0194
  31. Tomatsu S, Yasuda E, Patel P, Ruhnke K, Shimada T, Mackenzie WG, et al. Morquio A syndrome: diagnosis and current and future therapies. Pediatr Endocrinol Rev 2014;12 Suppl 1:141-51. 
  32. Langereis EJ, den Os MM, Breen C, Jones SA, Knaven OC, Mercer J, et al. Progression of Hip Dysplasia in Mucopolysaccharidosis Type I Hurler After Successful Hematopoietic Stem Cell Transplantation. J Bone Joint Surg Am 2016;98:386-95.  https://doi.org/10.2106/JBJS.O.00601
  33. Brands MM, Gungor D, van den Hout JM, Karstens FP, Oussoren E, Plug I, et al. Pain: a prevalent feature in patients with mucopolysaccharidosis. Results of a cross-sectional national survey. J Inherit Metab Dis 2015;38:323-31.  https://doi.org/10.1007/s10545-014-9737-0
  34. Peracha H, Sawamoto K, Averill L, Kecskemethy H, Theroux M, Thacker M, et al. Molecular genetics and metabolism, special edition: Diagnosis, diagnosis and prognosis of Mucopolysaccharidosis IVA. Mol Genet Metab 2018;125:18-37.  https://doi.org/10.1016/j.ymgme.2018.05.004
  35. Harmatz P, Ketteridge D, Giugliani R, Guffon N, Teles EL, Miranda MC, et al. Direct comparison of measures of endurance, mobility, and joint function during enzyme-replacement therapy of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome): results after 48 weeks in a phase 2 open-label clinical study of recombinant human N-acetylgalactosamine 4-sulfatase. Pediatrics 2005;115:e681-9.  https://doi.org/10.1542/peds.2004-1023
  36. Hendriksz CJ. Elosulfase alfa (BMN 110) for the treatment of mucopolysaccharidosis IVA (Morquio A Syndrome). Expert Rev Clin Pharmacol 2016;9:1521-32.  https://doi.org/10.1080/17512433.2017.1260000
  37. Kakkis ED, Muenzer J, Tiller GE, Waber L, Belmont J, Passage M, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med 2001;344:182-8.  https://doi.org/10.1056/NEJM200101183440304
  38. Fox JE, Volpe L, Bullaro J, Kakkis ED, Sly WS. First human treatment with investigational rhGUS enzyme replacement therapy in an advanced stage MPS VII patient. Mol Genet Metab 2015;114:203-8.  https://doi.org/10.1016/j.ymgme.2014.10.017
  39. Muenzer J, Beck M, Eng CM, Giugliani R, Harmatz P, Martin R, et al. Long-term, open-labeled extension study of idursulfase in the treatment of Hunter syndrome. Genet Med 2011;13:95-101.  https://doi.org/10.1097/GIM.0b013e3181fea459
  40. Jakobkiewicz-Banecka J, Gabig-Ciminska M, Kloska A, Malinowska M, Piotrowska E, Banecka-Majkutewicz Z, et al. Glycosaminoglycans and mucopolysaccharidosis type III. Front Biosci (Landmark Ed) 2016;21:1393-409.  https://doi.org/10.2741/4463
  41. Schweighardt B, Tompkins T, Lau K, Jesaitis L, Qi Y, Musson DG, et al. Immunogenicity of Elosulfase Alfa, an Enzyme Replacement Therapy in Patients With Morquio A Syndrome: Results From MOR-004, a Phase III Trial. Clin Ther 2015;37:1012-21.e6. https://doi.org/10.1016/j.clinthera.2014.11.005