DOI QR코드

DOI QR Code

Study on size diversity according to the sex, period, and habitat of three new Korean Hynobius salamanders: Hynobius geojeensis, H. perplicatus, and H. unisacculus

한국산 도롱뇽 3종 거제도롱뇽, 숨은의령도롱뇽, 꼬마도롱뇽의 성별, 시기 그리고 서식지에 따른 크기 다양성 연구

  • Yu-Jeong Jeong (Research Institute of EcoScience, Ewha Womans University) ;
  • Yikweon Jang (Division of EcoScience, Ewha Womans University) ;
  • Kyo Soung Koo (Research Institute of EcoScience, Ewha Womans University)
  • 정유정 (이화여자대학교 에코과학연구소) ;
  • 장이권 (이화여자대학교 에코과학부) ;
  • 구교성 (이화여자대학교 에코과학연구소)
  • Received : 2023.09.06
  • Accepted : 2023.12.14
  • Published : 2023.12.31

Abstract

Amphibians are the world's most threatened group of animals, with approximately 41% facing extinction. Contrary to this global trend, the number of amphibian species in Korea has increased by approximately 53.3% over the past 20 years. In particular, salamanders within the genus Hynobius showed even greater diversity, with the number increasing three-fold from two species to seven. However, morphological and ecological traits required for the clear differentiation of these animals are yet to be determined, leading to much confusion. In this study, we investigated the validity of using size traits for species identification, as this method is currently considered a rule of thumb when differentiating Geoje salamanders (Hynobius geojeensis), cryptic Uiryeong salamanders (H. perplicatus), and Korean small salamanders (H. unisacculus). Our study revealed that sex, study period, and habitat were all factors associated with significant differences in snout-vent length, head width, and body weight. Differences in these size traits were evident both between and within species. Our results show that body size traits applied in the recent classification of the three new salamander species could not be seen as a suitable criterion. Such identification methods based solely on body size not only cause great confusion in the field but will also limit future research on Korean Hynobius salamanders.

양서류는 세계적으로 가장 빠르게 감소하고 있는 생물그룹으로 전체 약 41%가 멸종위기에 처해 있다. 이러한 세계적인 추세와는 달리 한국의 양서류는 지난 20년간 약 53.3%가 증가했으며, Hynobius속 내 도롱뇽의 경우, 2종에서 7종으로 3배 이상 증가했다. 하지만, 현재까지 Hynobius 속 내 종들의 형태적 그리고 생태적 특징은 종 간에 뚜렷한 차이가 확인되고 있지 않아 전문가도 동정하기 어려워 큰 혼란이 발생하고 있다. 본 연구에서는 최근 신종으로 기재된 거제도롱뇽(Hynobius geojeensis), 숨은의령도롱뇽(H. perplicatus), 꼬마도롱뇽(H. unisacculus) 3종을 대상으로 종기재 당시 주요하게 고려되었던 크기 형질이 종의 지위를 구분하는 데 있어서 타당한 기준이었는지를 규명하고자 하였다. 연구 결과, 성별, 시기, 서식지 환경에 따라 크기 형질에서 유의미한 차이가 있었으며, 종 간 그리고 종내 모두에서 확인되었다. 이런 크기 형질에서의 차이는 신종 도롱뇽을 구분하는데, 오류를 발생시킬 가능성이 있기 때문에 종을 구분하는 기준으로는 적합하지 않다고 판단된다. 따라서 크기를 이용한 종 동정은 현장에서 큰 혼란을 야기할 뿐만 아니라 추후 Hynobius 도롱뇽 연구의 접근성 자체를 제한하는 요소가 될 가능성이 크다.

Keywords

Acknowledgement

현장 조사와 논문 작성에 도움을 주신 이화여자대학교 동물행동연구실 연구원들께 감사의 말씀 드리겠습니다.

References

  1. Altmann J, D Schoeller, SA Altmann, P Muruthi and RM Sapolsky. 1993. Body size and fatness of free-living baboons reflect food availability and activity levels. Am. J. Primatol. 30:149-161. https://doi.org/10.1002/ajp.1350300207
  2. Borzee A and MS Min. 2021. Disentangling the impacts of speciation, sympatry and the island effect on the morphology of seven Hynobius sp. salamanders. Animals 11:187. https://doi.org/10.3390/ani11010187
  3. Borzee A, KR Messenger, S Chae, D Andersen, J Groffen, YI Kim and MS Min. 2020. Yellow sea mediated segregation between North East Asian Dryophytes species. PLoS One 15:e0234299. https://doi.org/10.1371/journal.pone.0234299
  4. Borzee A, Y Shin, NA PoyarkovA, JY Jeon, HJ Baek, CH Lee, J An, YJ Hong and MS Min. 2022. Dwindling in the mountains: Description of a critically endangered and microendemic Onychodactylus species (Amphibia, Hynobiidae) from the Korean Peninsula. Zool. Res. 43:750-755. https://doi.org/10.24272/j.issn.2095-8137.2022.048
  5. Brooks JL and SI Dodson. 1965. Predation, body size, and composition of plankton: The effect of a marine planktivore on lake plankton illustrates theory of size, competition, and predation. Science 150:28-35. https://doi.org/10.1126/science.150.3692.2
  6. Bruce RC and NG Hairston Sr. 1990. Life-history correlates of body-size differences between two populations of the salamander, Desmognathus monticola. J. Herpetol. 24:126-134. https://doi.org/10.2307/1564219
  7. Chen H, R Bu, M Ning, B Yang, Z Wu and H Huang. 2022. Sexual dimorphism in the Chinese endemic species Hynobius maoershanensis (Urodela: Hynobiidae). Animals 12:1712. https://doi.org/10.3390/ani12131712
  8. Gause GF. 1932. Experimental studies on the struggle for existence: 1. Mixed population of two species of yeast. J. Exp. Biol. 9:389-402. https://doi.org/10.1242/jeb.9.4.389
  9. Gause GF. 1934. Experimental analysis of Vito Volterra's mathematical theory of the struggle for existence. Science 79:16-17. https://doi.org/10.1126/science.79.2036.16.b
  10. Grant PR and BR Grant. 2007. How and Why Species Multiply: The Radiation of Darwin's Finches. Princeton University Press. Princeton, New Jersey. https://doi.org/10.1515/9781400837946
  11. Hasumi M and F Kanda. 2007. Phenological activity estimated by movement patterns of the Siberian salamander near a fen. Herpetologica 63:163-175. https://doi.org/10.1655/0018-0831(2007)63[163:PAEBMP]2.0.CO;2
  12. Hasumi M and H Iwasawa. 1990. Seasonal changes in body shape and mass in the salamander, Hynobius nigrescens. J. Herpetol. 24:113-118. https://doi.org/10.2307/1564217
  13. Kim JB, MS Min and M Matsui. 2003. A new species of lentic breeding Korean salamander of the genus Hynobius (Amphibia, Urodela). Zool. Sci. 20:1163-1169. https://doi.org/10.2108/zsj.20.1163
  14. Koo KS, ES Kim, H Kim, JY Im and Y Kim. 2023. Problem in morphological identification of the five newly described Korean Hynobius salamander species in South Korea. Korean J. Herpetol. 13:9-17.
  15. Koo KS, HJ Kim, ES Kim, TE UM, NR Park and Y Jang. 2022. Hybridization and species identification study on 4 Korean salamander species. p. 23. In: Proceedings of 15th Korean Society of Herpetologists. Seocheon, Korea.
  16. Koo KS, HJ Kim, MK Kwak, JM Oh and Y Jang. 2021. A study on size diversity and breeding of Korean salamanders of the genus Hynobius. p. 15. In: Proceedings of 14th Korean Society of Herpetologists. Gwangju, Korea(Online conference).
  17. Lee JH, MS Min, TH Kim, HJ Baek, H Lee and D Park. 2010. Age structure and growth rates of two Korean salamander species (Hynobius yangi and Hynobius quelpaertensis) from field populations. Anim. Cells Syst. 14:315-322. https://doi.org/10.1080/19768354.2010.525810
  18. Lovich JE and JW Gibbons. 1992. A review of techniques for quantifying sexual size dimorphism. Growth Dev. Aging 56:269-269.
  19. Mammola S, F Milano, M Vignal, J Andrieu and M Isaia. 2019. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Glob. Ecol. Biogeogr. 28:1325-1335. https://doi.org/10.1111/geb.12935
  20. Martin JM, JI Mead and PS Barboza. 2018. Bison body size and climate change. Ecol. Evol. 8:4564-4574. https://doi.org/10.1002/ece3.4019
  21. Min MS, H Baek, JY Song, M Chang and N Poyarkov Jr. 2016. A new species of salamander of the genus Hynobius(Amphibia, Caudata, Hynobiidae) from South Korea. Zootaxa 4169:475-503. https://doi.org/10.11646/zootaxa.4169.3.4
  22. Min MS, SY Yang, RM Bonett, DR Vieites, RA Brandon and DB Wake. 2005. Discovery of the first Asian plethodontid salamander. Nature 435:87-90. https://doi.org/10.1038/nature03474
  23. Monnet JM and MI Cherry. 2002. Sexual size dimorphism in anurans. Proc. R. Soc. B-Biol. Sci. 269:2301-2307. https://doi.org/10.1098/rspb.2002.2170
  24. Mori T. 1928. On a new Hynobius from Quelpart Is. J. Chosen Nat. Hist. Soc. 5:53.
  25. Morrison C and JM Hero. 2003. Geographic variation in life-history characteristics of amphibians: A review. J. Anim. Ecol. 72:270-279. https://doi.org/10.1046/j.1365-2656.2003.00696.x
  26. Morton ML and JS Gallup. 1975. Reproductive cycle of the Belding ground squirrel (Spermophilus beldingi beldingi): seasonal and age differences. Great Basin Nat. 35:427-433.
  27. Okamiya H, N Hayase and T Kusano. 2021. Increasing body size and fecundity in a salamander over four decades, possibly due to global warming. Biol. J. Linnean Soc. 132:634-642. https://doi.org/10.1093/biolinnean/blaa201
  28. Peterman WE, JA Crawford and DJ Hocking. 2016. Effects of elevation on plethodontid salamander body size. Copeia 104:202-208. https://doi.org/10.1643/OT-14-188
  29. Romano A, G Bruni and C Paoletti. 2009. Sexual dimorphism in the Italian endemic species Salamandrina perspicillata (Savi, 1821) and testing of a field method for sexing salamanders. Amphib. Reptil. 30:425-434. https://doi.org/10.1163/156853809788795128
  30. Rucker LE, DJ Brown, CD Jacobsen, KR Messenger, ER Wild and TK Pauley. 2021. A guide to sexing salamanders in Central Appalachia, United States. J. Fish Wildl. Manag. 12:585-603. https://doi.org/10.3996/JFWM-20-042
  31. Sand H, G Cederlund and K Danell. 1995. Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102:433-442. https://doi.org/10.1007/BF00341355
  32. Schluter D and PR Grant. 1984. Determinants of morphological patterns in communities of Darwin's finches. Am. Nat. 123:175-196. https://doi.org/10.1086/284196
  33. Semlitsch RD, TL Anderson, MS Osbourn and BH Ousterhout. 2014. Structure and dynamics of ringed salamander(Ambystoma annulatum) populations in Missouri. Herpetologica 70:14-22. https://doi.org/10.1655/HERPETOLOGICA-D-13-00074
  34. Shine R. 1979. Sexual selection and sexual dimorphism in the Amphibia. Copeia 1979:297-306. https://doi.org/10.2307/1443418
  35. Smith JM and RL Brown. 1986. Competition and body size. Theor. Popul. Biol. 30:166-179. https://doi.org/10.1016/0040-5809(86)90031-6
  36. Whitton FJ, A Purvis, CDL Orme and MA Olalla-Tarraga. 2012. Understanding global patterns in amphibian geographic range size: Does Rapoport rule? Glob. Ecol. Biogeogr. 21:179-190. https://doi.org/10.1111/j.1466-8238.2011.00660.x
  37. Winne CT, MF Dorcas and SM Poppy. 2005. Population structure, body size, and seasonal activity of Black Swamp Snakes (Seminatrix pygaea). Southeast. Nat. 4:1-14. https://doi.org/10.1656/1528-7092(2005)004[0001:PSBSAS]2.0.CO;2