DOI QR코드

DOI QR Code

Amelioration of non-irrigated stress and improvement of sweet pumpkin fruit quality by Kushneria konosiri endophytic bacteria

  • Sang Tae Kim (Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Mee Kyung Sang (Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2023.10.11
  • 심사 : 2023.12.14
  • 발행 : 2023.12.31

초록

This study examined the impact of two bacterial strains, H05E-12 and H05R-04, on alleviating non-irrigation-induced stress and its subsequent effects on the fruit productivity of sweet pumpkin plants. When subjected to non-irrigation-induced stress, the lipid peroxidation, proline, total phenol, and total soluble sugar content significantly decreased in plants treated with either H05E-12 or H05R-04 compared to the control. In a greenhouse experiment under non-irrigated conditions, H05E-12-treated plants exhibited higher stomatal conductance than the control, although there was no significant change in the soil plant analysis development(SPAD) value due to treatment. Upon re-watering, an increase in fruit diameter was observed in H05E-12-treated plants, and the L-ascorbic acid content in the fruit also showed a significant increase compared to the control. The H05E-12 strain was identified as Kushneria konosiri. To the best of our knowledge, this is the first report detailing the beneficial effects of K. konosiri on the alleviation of non-irrigation-induced stress and the promotion of plant growth in sweet pumpkin plants.

키워드

과제정보

This work was supported by National Institute of Agricultural Sciences(Project No. PJ01351902) of Rural Development Administration, Republic of Korea.

참고문헌

  1. Acreche MM. 2017. Nitrogen-, water-and radiation-use efficiencies affected by sugarcane breeding in Argentina. Plant Breed. 136:174-181. https://doi.org/10.1111/pbr.12440
  2. Ahamd S, M Kamran, R Ding, X Meng, H Wang, I Ahmad, S Fahad and Q Han. 2019. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ 7:e7793. https://doi.org/10.7717/peerj.7793
  3. Azam M, SJ Maeng, HS Kim, SW Lee and JE Lee. 2018. Spatial and temporal trend analysis of precipitation and drought in South Korea. Water 10:765. https://doi.org/10.3390/w10060765
  4. Bao AK, SM Wang, GQ Wu, JJ Xi, JL Zhang and CM Wang. 2009. Overexpression of the arabidopsis H+ -PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci. 176:232-240. https://doi.org/10.1016/j.plantsci.2008.10.009
  5. Bates LS, RP Waldren and ID Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207. https://doi.org/10.1007/BF00018060
  6. Ben Mariem S, D Soba, B Zhou, I Loladze, F Morales and I Aranjuelo. 2021. Climate change, crop yield, and grain quality of C3 cereals: A meta-analysis of [CO2], temperature, and drought effects. Plants 10:1052. https://doi.org/10.3390/plants10061052
  7. Boubakri H. 2017. The role of ascorbic acid in plant-pathogen interactions. pp. 255-271. In: Ascorbic Acid in Plant Growth, Development and Stress Tolerance (Hossain M, S Munne-Bosch, D Burritt, P Diaz-Vivancos, M Fujita and A Lorence, eds.). Springer. Cham, Switzerland. https://doi.org/10.1007/978-3-319-74057-7_10
  8. Chandwani S and N Amaresan. 2022. Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production. Environ. Sci. Pollut. Res. Int. 29:22843-22859. https://doi.org/10.1007/s11356-022-18745-7
  9. Chaudhry S and GPS Sidhu. 2022. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports 41:1-31. https://doi.org/10.1007/s00299-021-02759-5
  10. Colla G and Y Rouphael. 2015. Biostimulants in horticulture. Sci. Hortic. 196:1-2. https://doi.org/10.1016/j.scienta.2015.10.044
  11. Cura JA, DR Franz, JE Filosofia, KB Balestrasse and LE Burgueno. 2017. Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 5:41. https://doi.org/10.3390/microorganisms5030041
  12. del Amor FM, A Serrano-Martinez, MI Fortea, P Legua and E Nunez-Delicado. 2008. The effect of plant-associative bacteria (Azospirillum and Pantoea) on the fruit quality of sweet pepper under limited nitrogen supply. Sci. Hortic. 117:191-196. https://doi.org/10.1016/j.scienta.2008.04.006
  13. Dhindsa RS, P Plumb-Dhindsa and TA Thorpe. 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32:93-101. https://doi.org/10.1093/jxb/32.1.93
  14. Dimkic I, T Janakiev, M Petrovic, G Degrassi and D Fira. 2022. Plant-associated bacillus and pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review. Physiol. Mol. Plant Pathol. 117:101754. https://doi.org/10.1016/j.pmpp.2021.101754
  15. Du G, L Qu, X Hong, C Li, D Ding, P Gao and Q Xu. 2021. Kushneria phosphatilytica sp. nov., a phosphate-solubilizing bacterium isolated from a solar saltern. Int. J. Syst. Evol. Microbiol. 71:004619. https://doi.org/10.1099/ijsem.0.004619
  16. Du Jardin P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 196:3-14. https://doi.org/10.1016/j.scienta.2015.09.021
  17. Farooq M, M Hussain, S Ul-Allah and KH Siddique. 2019. Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agric. Water Manage. 219:95-108. https://doi.org/10.1016/j.agwat.2019.04.010
  18. Gnayfeed MH, HG Daood, PA Biacs and CF Alcaraz. 2001. Content of bioactive compounds in pungent spice red pepper (paprika) as affected by ripening and genotype. J. Sci. Food Agric. 81:1580-1585. https://doi.org/10.1002/jsfa.982
  19. Gontia-Mishra I, S Sapre, A Sharma and S Tiwari. 2016. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol. 18:992-1000. https://doi.org/10.1111/plb.12505
  20. IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (The Core Writing Team, RK Pachauri and L Meyer eds.). The Intergovernmental Panel on Climate Change. Geneva, Switzerland.
  21. Jakopic J, R Veberic and F Stampar. 2007. The effect of reflective foil and hail nets on the lighting, color and anthocyanins of 'Fuji' apple. Sci. Hortic. 115:40-46. https://doi.org/10.1016/j.scienta.2007.07.014
  22. Kasim WA, ME Osman, MN Omar, IA Abd El-Daim, S Bejai and J Meijer. 2013. Control of drought stress in wheat using plant-growth-promoting bacteria. J. Plant Growth Regul. 32:122-130. https://doi.org/10.1007/s00344-012-9283-7
  23. Kasim WA, MEH Osman, MN Omar and S Salama. 2021. Enhancement of drought tolerance in Triticum aestivum L. seedling using Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11. Bull. Natl. Res. Cent. 45:95. https://doi.org/10.1186/s42269-021-00546-6
  24. Kim ST, S Yoo, J Song, H Weon and MK Sang. 2019. Screening of bacterial strains for alleviating drought stress in chili pepper plants. Res. Plant Dis. 25:136-142. https://doi.org/10.5423/RPD.2019.25.3.136
  25. Kumar N and RC Dubey. 2022. Plant growth-promoting attributes of an endophyte Enterobacter roggenkampii BLS02 isolated from Barleria lupulina Lindl. Org. Agric. 12:137-145. https://doi.org/10.1007/s13165-021-00375-x
  26. Li S, X Li, Z Wei and F Liu. 2020. ABA-mediated modulation of elevated CO2 on stomatal response to drought. Curr. Opin. Plant Biol. 56:174-180. https://doi.org/10.1016/j.pbi.2019.12.002
  27. Martinez-Vilalta J and N Garcia-Forner. 2017. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ. 40:962-976. https://doi.org/10.1111/pce.12846
  28. Marulanda A, J Barea and R Azcon. 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. J. Plant Growth Regul. 28:115-124. https://doi.org/10.1007/s00344-009-9079-6
  29. Mega R, F Abe, JS Kim, Y Tsuboi, K Tanaka, H Kobayashi, Y Sakata, K Hanada, H Tsujimoto, J Kikuchi, SR Cutler and M Okamoto. 2019. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat. Plants 5:153-159. https://doi.org/10.1038/s41477-019-0361-8
  30. Morais MC, A Mucha, H Ferreira, B Goncalves, E Bacelar and G Marques. 2019. Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. J. Sci. Food Agric. 99:5341-5349. https://doi.org/10.1002/jsfa.9773
  31. Navarro-Torre S, L Carro, ID Rodriguez-Llorente, E Pajuelo, MA Caviedes, JM Igual, S Redondo-Gomez, M Camacho, HP Klenk and MDC Montero-Calasanz. 2018. Kushneria phyllosphaerae sp. nov. and Kushneria endophytica sp. nov., plant growth promoting endophytes isolated from the halophyte plant Arthrocnemum macrostachyum. Int. J. Syst. Evol. Microbiol. 68:2800-2806. https://doi.org/10.1099/ijsem.0.002897
  32. Querejeta JI, I Prieto, C Armas, F Casanoves, JS Dieme, M Diouf, H Yossi, B Kaya, FI Pugnaire and GM Rusch. 2022. Higher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland trees. New Phytol. 235:1351-1364. https://doi.org/10.1111/nph.18254
  33. Rahman M, AA Sabir, JA Mukta, MMA Khan, M Mohi-Ud-Din, MG Miah, M Rahman and MT Islam. 2018. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci. Rep. 8:2504. https://doi.org/10.1038/s41598-018-20235-1
  34. Rouphael Y and G Colla. 2020. Editorial: biostimulants in agriculture. Front. Plant Sci. 11:40. https://doi.org/10.3389/fpls.2020.00040
  35. Sang MK, JD Kim, BS Kim and KD Kim. 2011. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101:666-678. https://doi.org/10.1094/PHYTO-08-10-0224
  36. Sharma S and TV Ramana Rao. 2013. Nutritional quality characteristics of pumpkin fruit as revealed by its biochemical analysis. Int. Food Res. J. 20:2309-2316
  37. Shin DJ, S Yoo, JK Hong, H Weon, J Song and MK Sang. 2019. Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on growth promotion and alleviation of heat and drought stresses in Chinese cabbage. Plant Pathol. J. 35:178-187. https://doi.org/10.5423/PPJ.NT.08.2018.0159
  38. Smirnoff N and GL Wheeler. 2000. Ascorbic acid in plants: Biosynthesis and function. Crit. Rev. Plant Sci. 19:267-290. https://doi.org/10.1080/07352680091139231
  39. Szymanska S, J Tyburski, A Piernik, M Sikora, J Mazur and H Katarzyna. 2020. Raising beet tolerance to salinity through bioaugmentation with halotolerant endophytes. Agronomy 10:1571. https://doi.org/10.3390/agronomy10101571
  40. Tinyane PP, D Sivakumar and P Soundy. 2013. Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Sci. Hortic. 161:340-349. https://doi.org/10.1016/j.scienta.2013.06.024
  41. Tiwari RK, MK Lal, R Kumar, KN Chourasia, KC Naga, D Kumar, SK Das and G Zinta. 2020. Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol. Plant. 172:1212-1226. https://doi.org/10.1111/ppl.13307
  42. Toscano-Verduzco FA, PA Cedeno-Valdivia, W Chan-Cupul, HA Hernandez-Ortega, E Ruiz-Sanchez, E Galindo-Velasco and E Cruz-Crespo. 2020. Phosphates solubilization, indol-3-acetic acid and siderophores production by Beauveria brongniartii and its effect on growth and fruit quality of Capsicum chinense. J. Horticult. Sci. Biotechnol. 95:235-246. https://doi.org/10.1080/14620316.2019.1662737
  43. Wang J, J Chen, A Sharma, S Tao, B Zheng, M Landi, H Yuan and D Yan. 2019. Melatonin stimulates activities and expression level of antioxidant enzymes and preserves functionality of photosynthetic apparatus in Hickory plants (Carya cathayensis Sarg.) under PEG-promoted drought. Agronomy 9:702. https://doi.org/10.3390/agronomy9110702
  44. Yang X, Z Dai, R Yuan, Z Guo, H Xi, Z He and M Wei. 2023. Effects of salinity on assembly characteristics and function of microbial communities in the phyllosphere and rhizosphere salt-tolerant Avicennia marina mangrove species. Microbiol. Spectr. 11:e03000-22. https://doi.org/10.1128/spectrum.03000-22
  45. Yemm EW and A Willis. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57:508-514. https://doi.org/10.1042/bj0570508
  46. Yoo SJ, DJ Shin, HY Won, J Song and MK Sang. 2018. Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae pv. tomato. Mycobiology 46:147-153. https://doi.org/10.1080/12298093.2018.1475370
  47. Yoo SJ, HY Weon, J Song and MK Sang. 2019. Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in tomato plants. J. Microbiol. Biotechnol. 29:1124-1136. https://doi.org/10.4014/jmb.1904.04026
  48. Yuan Y, M Zu, L Sun, J Zuo and J Tao. 2022. Isolation and screening of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing PGPR from Paeonia lactiflora rhizosphere and enhancement of plant growth. Sci. Hortic. 297:110956. https://doi.org/10.1016/j.scienta.2022.110956
  49. Yun JH, SK Park, JY Lee, MJ Jung and JW Bae. 2017. Kushneria konosiri sp. nov., isolated from the Korean salt-fermented seafood Daemi-jeot. Int. J. Syst. Evol. Microbiol. 67:3576-3582. https://doi.org/10.1099/ijsem.0.002170
  50. Zhang D and Y Hamauzu. 2003. Phenolic compounds, ascorbic acid, carotenoids and antioxidant properties of green, red and yellow bell peppers. J. Food Agric. Environ. 1:22-27.
  51. Zhu F, L Qu, X Hong and X Sun. 2011. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. Evid.-based Complement Altern. Med. 2011:615032. https://doi.org/10.1155/2011/615032