DOI QR코드

DOI QR Code

Theoretical Results for a Dipole Plasmonic Mode Based on a Forced Damped Harmonic Oscillator Model

  • Tongtong Hao (Department of Applied Physics, School of Mathematics and Physics, University of Science and Technology Beijing) ;
  • Quanshui Li (Department of Applied Physics, School of Mathematics and Physics, University of Science and Technology Beijing)
  • 투고 : 2023.02.07
  • 심사 : 2023.05.31
  • 발행 : 2023.08.25

초록

The localized surface-plasmon resonance has drawn great attention, due to its unique optical properties. In this work a general theoretical description of the dipole mode is proposed, using the forced damped harmonic oscillator model of free charges in an ellipsoid. The restoring force and driving force are derived in the quasistatic approximation under general conditions. In this model, metal is regarded as composed of free charges and bound charges. The bound charges form the dielectric background which has a dielectric function. Those free charges undergo a collective motion in the dielectric background under the driving force. The response of free charges will not be included in the dielectric function like the Drude model. The extinction and scattering cross sections as well as the damping coefficient from our model are verified to be consistent with those based on the Drude model. We introduce size effects and modify the restoring and driving forces by adding the dynamic depolarization factor and the radiation damping term to the depolarization factor. This model provides an intuitive physical picture as well as a simple theoretical description of the dipole mode of the localized surface-plasmon resonance based on free-charge collective motion.

키워드

과제정보

Central Universities (FRF-BR-19-002B); Scientific Research Foundation for the Returned Overseas Chinese Scholars (48th); Beijing Higher Education Young Elite Teacher Project (No YETP0391).

참고문헌

  1. X. Zhang and Q. Li, "Forced damped harmonic oscillator model of the dipole mode of localized surface plasmon resonance," Plasmonics 16, 1525-1536 (2021). https://doi.org/10.1007/s11468-021-01408-7
  2. J. Katyal and R. K. Soni, "Field enhancement around al nanostructures in the DUV-visible region," Plasmonics 10, 1729-1740 (2015). https://doi.org/10.1007/s11468-015-9991-5
  3. A. Agrawal, S. H. Cho, O. Zandi, S. Ghosh, R.W. Johns, and D. J. Milliron, "Localized surface plasmon resonance in semiconductor nanocrystals," Chem. Rev. 118, 3121-3207 (2018). https://doi.org/10.1021/acs.chemrev.7b00613
  4. T. A. Tabish, P. Dey, S. Mosca, M. Salimi, F. Palombo, P. Matousek, and N. Stone, "Smart gold nanostructures for light mediated cancer theranostics: Combining optical diagnostics with photothermal therapy," Adv. Sci. 7, 1903441 (2020).
  5. J. Son, D. Choi, M. Park, J. Kim, and K. S. Jeong, "Transformation of colloidal quantum dot: from intraband transition to localized surface plasmon resonance," Nano Lett. 20, 4985-4992 (2020). https://doi.org/10.1021/acs.nanolett.0c01080
  6. J. S. Niezgoda and S. J. Rosenthal, "Synthetic strategies for semiconductor nanocrystals expressing localized surface plasmon resonance," Chem. Phys. Chem. 17, 645-653 (2015).
  7. G. V. Naik, V. M. Shalaev, and A. Boltasseva, "Alternative plasmonic materials: Beyond gold and silver," Adv. Mater. 25, 3264-3294 (2013). https://doi.org/10.1002/adma.201205076
  8. J. Jung and T. G. Pedersen, "Analysis of plasmonic properties of heavily doped semiconductors using full band structure calculations," J. Appl. Phys. 113, 114904 (2013).
  9. P. K. Jain, "Plasmon-in-a-box: On the physical nature of fewcarrier plasmon resonances," J. Phys. Chem. Lett. 5, 3112-3119 (2014). https://doi.org/10.1021/jz501456t
  10. Y. Li, H. Guo, Z. Yin, K. Lyle, and L. Tian, "Metal-organic frameworks for preserving the functionality of plasmonic nanosensors," ACS Appl. Mater. Interf. 13, 5564-5573 (2021). https://doi.org/10.1021/acsami.0c20390
  11. X. Han, K. Liu, and C. Sun, "Plasmonics for biosensing," Materials 12, 1411 (2019).
  12. M. Kraft, Y. Luo, S. A. Maier, and J. B. Pendry, "Designing plasmonic gratings with transformation optics," Phys. Rev. X. 5, 031029 (2015).
  13. R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, and M. Wang, "Broadband antireflection and light-trapping enhancement of plasmonic solar cells," Phys. Rev. B. 87, 195444 (2013).
  14. V. Awasthi, R. Goel, S. Agarwal, P. Rai, and S. K. Dubey, "Optical nanoantenna for beamed and surface-enhanced Raman spectroscopy," J. Raman Spectrosc. 51, 2121-2145 (2020). https://doi.org/10.1002/jrs.5932
  15. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, "Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine," Acc. Chem. Res. 41, 1578-1586 (2008). https://doi.org/10.1021/ar7002804
  16. O. A. Balitskii, "Recent energy targeted applications of LSPR semiconductor nanocrystals: A mini-review," Mater. Today Energy 20, 100629 (2020).
  17. S. Lal, S. E. Clare, and N. J. Halas, "Nanoshell-enabled photothermal cancer therapy: Impending clinical impact," Acc. Chem. Res. 41, 1842-1851 (2008). https://doi.org/10.1021/ar800150g
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Germany, 1983).
  19. C. Ciraci, J. B. Pendry, and D. R. Smith, "Hydrodynamic model for plasmonics: A macroscopic approach to a microscopic problem," Chem. Phys. Chem. 14, 1109-1116 (2013). https://doi.org/10.1002/cphc.201200992
  20. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003). https://doi.org/10.1126/science.1089171
  21. Y. Li, K. Zhao, H. Sobhani, K. Bao, and P. Nordlander, "Geometric dependence of the line width of localized surface plasmon resonances," J. Phys. Chem. Lett. 4, 1352-1357 (2013). https://doi.org/10.1021/jz4004137
  22. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). https://doi.org/10.1016/S0030-4018(03)01357-9
  23. J. Zuloaga and P. Nordlander, "On the energy shift between near-field and far-field peak intensities in localized plasmon systems," Nano Lett. 11, 1280-1283 (2011). https://doi.org/10.1021/nl1043242
  24. J. Zhu and X.-C. Deng, "Improve the refractive index sensitivity of gold nanotube by reducing the restoring force of localized surface plasmon resonance," Sens. Actuator B: Chem. 155, 843-847 (2011). https://doi.org/10.1016/j.snb.2011.01.059
  25. M. Meier and A. Wokaun, "Enhanced fields on large metal particles: Dynamic depolarization," Opt. Lett. 8, 581-583 (1983). https://doi.org/10.1364/OL.8.000581
  26. M. Januar, B. Liu, J.-C. Cheng, K. Hatanaka, H. Misawa, H.-H. Hsiao, and K.-C. Liu, "Role of depolarization factors in the evolution of a dipolar plasmonic spectral line in the far- and near-field regimes," J. Phys. Chem. C 124, 3250-3259 (2020). https://doi.org/10.1021/acs.jpcc.9b10485
  27. P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir 12, 788-800 (1996). https://doi.org/10.1021/la9502711
  28. M. Born and K. Huang, Dynamic theory of Crystal lattices (Oxford University Press, UK, 1954).
  29. F. Tam, A. L. Chen, J. Kundu, W. Hui, and N. J. Halas, "Mesoscopic nanoshells: Geometry-dependent plasmon resonances beyond the quasistatic limit," J. Chem. Phys. 127, 204703 (2007).
  30. J. A. Stratton, Electromagnetic theory (John Wiley & Sons, NY, USA, 2007).
  31. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, UK, 1960), Vol. 8.
  32. S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations," Plasmonics 6, 547-555 (2011). https://doi.org/10.1007/s11468-011-9235-2
  33. S.-E. Yang, P. Liu, Y.-J. Zhang, Q. N. Guo, and Y.-S. Chen, "Effects of silver nanoparticles size and shape on light scattering," Optik 127, 5722-5728 (2016). https://doi.org/10.1016/j.ijleo.2016.03.071
  34. M. R. A. Majic, B. Auguie, and E. C. L. Ru, "Comparison of dynamic corrections to the quasistatic polarizability and optical properties of small spheroidal particles," J. Chem. Phys. 156, 104110 (2022).
  35. A. Moroz, "Depolarization field of spheroidal particles," J. Opt. Soc. Am. B 26, 517-527 (2009). https://doi.org/10.1364/JOSAB.26.000517
  36. J. A. Faucheaux and P. K. Jain, "Plasmons in photocharged ZnO nanocrystals reveal nature of charge dynamics," J. Phys. Chem. Lett. 4, 3024-3030 (2013). https://doi.org/10.1021/jz401719u