DOI QR코드

DOI QR Code

Shearing Interferometry: Recent Research Trends and Applications

  • Ki-Nam Joo (Department of Photonic Engineering, Chosun University) ;
  • Hyo Mi Park (Department of Photonic Engineering, Chosun University)
  • Received : 2023.05.26
  • Accepted : 2023.07.05
  • Published : 2023.08.25

Abstract

We review recent research related to shearing interferometry, reported over the last two decades. Shearing interferometry is categorized as azimuthal, radial, or lateral shearing interferometers by its fundamental principle to generate interference. In this review the research trends for each technique are provided, with a summary of experimental results containing theoretical background, the optical configuration, analysis, and perspective on its application fields.

Keywords

Acknowledgement

Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2021R1A2C1008661).

References

  1. H. P. Stahl, "Review of phase-measuring interferometry," Proc. SPIE 1332, 704-719 (1991).  https://doi.org/10.1117/12.51121
  2. S. Yang and G. Zhang, "A review of interferometry for geometric measurement," Meas. Sci. Technol. 29, 102001 (2018). 
  3. J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).  https://doi.org/10.1109/2944.796348
  4. N. Bobroff, "Recent advances in displacement measuring interferometry," Meas. Sci. Technol. 4, 907 (1993). 
  5. Y. Wang, F. Xie, S. Ma, and L. Dong, "Review of surface profile measurement techniques based on optical interferometry," Opt. Lasers Eng. 93, 164-170 (2017).  https://doi.org/10.1016/j.optlaseng.2017.02.004
  6. S.-W. Kim and G.-H. Kim, "Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry," Appl. Opt. 38, 5968-5973 (1999).  https://doi.org/10.1364/AO.38.005968
  7. R. M. Neal and J. C. Wyant, "Polarization phase-shifting point-diffraction interferometer," Appl. Opt. 45, 3463-3476 (2006).  https://doi.org/10.1364/AO.45.003463
  8. L. Huang, H. Choi, W. Zhao, L. R. Graves, and D. W. Kim, "Adaptive interferometric null testing for unknown freeform optics metrology," Opt. Lett. 41, 5539-5542 (2016).  https://doi.org/10.1364/OL.41.005539
  9. D. Francis, R. Tatam, and R. Groves, "Shearography technology and applications: A review," Meas. Sci. Technol. 21, 102001 (2010). 
  10. T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, "Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry," Opt. Lett. 36, 1680-1682 (2011).  https://doi.org/10.1364/OL.36.001680
  11. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, "An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques," Chem. Phys. Lett. 369, 318-324 (2003).  https://doi.org/10.1016/S0009-2614(02)02021-3
  12. D. Guo and M. Wang, "Self-mixing interferometry based on a double-modulation technique for absolute distance measurement," Appl. Opt. 46, 1486-1491 (2007).  https://doi.org/10.1364/AO.46.001486
  13. M. Norgia, G. Giuliani, and S. Donati, "Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop," IEEE Trans. Instrum. Meas. 56, 1894-1900 (2007).  https://doi.org/10.1109/TIM.2007.904551
  14. R. Gonzalez-Romero, M. Strojnik, and G. Garcia-Torales, "Theory of a rotationally shearing interferometer," J. Opt. Soc. Am. A 38, 264-270 (2021).  https://doi.org/10.1364/JOSAA.406186
  15. P. Hariharan and D. Sen, "Radial shearing interferometer," J. Sci. Instrum. 38, 428 (1961). 
  16. M. P. Rimmer and J. C. Wyant, "Evaluation of large aberrations using a lateral-shear interferometer having variable shear," Appl. Opt. 14, 142-150 (1975).  https://doi.org/10.1364/AO.14.000142
  17. M. Strojnik and B. Bravo-Medina, "Rotationally shearing interferometer for extra-solar planet detection: Preliminary results with a solar system simulator," Opt. Express 28, 29553-29561 (2020).  https://doi.org/10.1364/OE.398649
  18. M. Strojnik, "Rotational shearing interferometer in detection of the Super-Earth exoplanets," Appl. Sci. 12, 2840 (2022). 
  19. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, "Flipping interferometry and its application for quantitative phase microscopy in a micro-channel," Opt. Lett. 41, 2354-2357 (2016).  https://doi.org/10.1364/OL.41.002354
  20. I. Moreno, G. Paez, and M. Strojnik, "Reversal and rotationally shearing interferometer," Opt. Commun. 233, 245-252 (2004).  https://doi.org/10.1016/j.optcom.2004.01.043
  21. H. Wang, K. Sawhney, S. Berujon, E. Ziegler, S. Rutishauser, and C. David, "X-ray wavefront characterization using a rotating shearing interferometer technique," Opt. Express 19, 16550-16559 (2011).  https://doi.org/10.1364/OE.19.016550
  22. M. Makita, G. Seniutinas, M. H. Seaberg, H. J. Lee, E. C. Galtier, M. Liang, A. Aquila, S. Boutet, A. Hashim, M. S. Hunter, T. van Driel, U. Zastrau, C. David, and B. Nagler, "Double grating shearing interferometry for X-ray free-electron laser beams," Optica 7, 404-409 (2020).  https://doi.org/10.1364/OPTICA.390601
  23. D. Liu, Y. Yang, L. Wang, and Y. Zhuo, "Real time diagnosis of transient pulse laser with high repetition by radial shearing interferometer," Appl. Opt. 46, 8305-8314 (2007).  https://doi.org/10.1364/AO.46.008305
  24. D. Bian, D. Kim, B. Kim, L. Yu, K.-N. Joo, and S.-W. Kim, "Diverging cyclic radial shearing interferometry for singleshot wavefront sensing," Appl. Opt. 59, 9067-9074 (2020).  https://doi.org/10.1364/AO.402903
  25. D. Bian, K.-N. Joo, Y. Lu, and L. Yu, "Spherical wavefront measurement on modified cyclic radial shearing interferometry," Opt. Express 29, 38347-38358 (2021).  https://doi.org/10.1364/OE.441675
  26. H. M. Park, D. Kim, C. E. Guthery, and K.-N. Joo, "Radial shearing dynamic wavefront sensor based on a geometric phase lens pair," Opt. Lett. 47, 549-552 (2022).  https://doi.org/10.1364/OL.447505
  27. H. M. Park and K.-N. Joo, "Surface figure measurement tool based on a radial shearing interferometer using a geometric phase lens with various spherical wavefronts," Appl. Opt. 62, 1999-2006 (2023).  https://doi.org/10.1364/AO.477105
  28. X. Liu, Y. Gao, and M. Chang, "A partial differential equation algorithm for wavefront reconstruction in lateral shearing interferometry," J. Opt. A: Pure Appl. Opt. 11, 045702 (2009). 
  29. J.-C. Chanteloup, "Multiple-wave lateral shearing interferometry for wave-front sensing," Appl. Opt. 44, 1559-1571 (2005).  https://doi.org/10.1364/AO.44.001559
  30. M. Carbillet, A. Ferrari, C. Aime, H. Campbell, and A. Greenaway, "Wavefront sensing: from historical roots to the state-of-the-art," EAS Publ. Ser. 22, 165-185 (2006).  https://doi.org/10.1051/eas:2006131
  31. L. Huang, M. Idir, C. Zuo, K. Kaznatcheev, L. Zhou, and A. Asundi, "Comparison of two-dimensional integration methods for shape reconstruction from gradient data," Opt. Lasers Eng. 64, 1-11 (2015).  https://doi.org/10.1016/j.optlaseng.2014.07.002
  32. X. Xie, L. Yang, N. Xu, and X. Chen, "Michelson interferometer based spatial phase shift shearography," Appl. Opt. 52, 4063-4071 (2013).  https://doi.org/10.1364/AO.52.004063
  33. H. M. Shang, Y. Y. Hung, W. D. Luo, and F. Chen, "Surface profiling using shearography," Opt. Eng. 39, 23-31 (2000).  https://doi.org/10.1117/1.602331
  34. S. Aknoun, J. Savatier, P. Bon, F. Galland, L. Abdeladim, B. F. Wattellier, and S. Monneret, "Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion," J. Biomed. Opt. 20, 126009 (2015). 
  35. Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, "White-light quantitative phase imaging unit," Opt. Express 24, 9308-9315 (2016).  https://doi.org/10.1364/OE.24.009308
  36. P. Bon, J. Savatier, M. Merlin, S. Monneret, and B. Wattellier, "Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy," J. Biomed. Opt. 17, 076004 (2012). 
  37. S. Rawat, S. Komatsu, A. Markman, A. Anand, and B. Javidi, "Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification," Appl. Opt. 56, D127-D133 (2017).  https://doi.org/10.1364/AO.56.00D127
  38. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, "Lateral shearing digital holographic imaging of small biological specimens," Opt. Express 20, 23617-23622 (2012).  https://doi.org/10.1364/OE.20.023617
  39. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express 17, 13080-13094 (2009).  https://doi.org/10.1364/OE.17.013080
  40. C. Falldorf, M. Agour, and R. B. Bergmann, "Digital holography and quantitative phase contrast imaging using computational shear interferometry," Opt. Eng. 54, 024110 (2015). 
  41. H. B. Jeong, H. M. Park, Y.-S. Ghim, and K.-N. Joo, "Flexible lateral shearing interferometry based on polarization gratings for surface figure metrology," Opt. Lasers Eng. 154, 107020 (2022). 
  42. Y.-S. Ghim, H.-G. Rhee, A. Davies, H.-S. Yang, and Y.-W. Lee, "3D surface mapping of freeform optics using wavelength scanning lateral shearing interferometry," Opt. Express 22, 5098-5105 (2014).  https://doi.org/10.1364/OE.22.005098
  43. C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, "Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer," Opt. Express 25, 13659-13667 (2017).  https://doi.org/10.1364/OE.25.013659
  44. Y. B. Seo, H. B. Jeong, H.-G. Rhee, Y.-S. Ghim, and K.-N. Joo, "Single-shot freeform surface profiler," Opt. Express 28, 3401-3409 (2020).  https://doi.org/10.1364/OE.380305
  45. Y. Zhu, A. Tian, H. Yuan, B. Liu, H. Wang, K. Ren, Y. Zhang, K. Wang, and S. Wang, "Quadriwave lateral shearing interferometry based on double birefringent crystals of beam displacer," Appl. Opt. 62, 654-664 (2023).  https://doi.org/10.1364/AO.478344
  46. M. Kumar and C. Shakher, "Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element," Opt. Lasers Eng. 73, 33-39 (2015).  https://doi.org/10.1016/j.optlaseng.2015.04.002
  47. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, "Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction," Opt. Lett. 31, 1405-1407 (2006).  https://doi.org/10.1364/OL.31.001405
  48. A. Gopal, S. Minardi, and M. Tatarakis, "Quantitative two-dimensional shadowgraphic method for high-sensitivity density measurement of under-critical laser plasmas," Opt. Lett. 32, 1238-1240 (2007).  https://doi.org/10.1364/OL.32.001238
  49. S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, "Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry," Opt. Express 23, 16383-16406 (2015).  https://doi.org/10.1364/OE.23.016383
  50. T. Ling, D. Liu, X. Yue, Y. Yang, Y. Shen, and J. Bai, "Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating," Opt. Lett. 40, 2245-2248 (2015).  https://doi.org/10.1364/OL.40.002245
  51. T. Ling, J. Jiang, R. Zhang, and Y. Yang, "Quadriwave lateral shearing interferometric microscopy with wideband sensitivity enhancement for quantitative phase imaging in real time," Sci. Rep. 7, 9 (2017). 
  52. P. Singh, M. S. Faridi, and C. Shakher, "Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique," Opt. Eng. 43, 387-392 (2004).  https://doi.org/10.1117/1.1635370
  53. P. P. Naulleau, K. A. Goldberg, and J. Bokor, "Extreme ultraviolet carrier-frequency shearing interferometry of a lithographic four-mirror optical system," J. Vac. Sci. Technol. B 18, 2939-2943 (2000).  https://doi.org/10.1116/1.1321290
  54. D. H. Szczesna, J. Jaronski, H. T. Kasprzak, and U. Stenevi, "Interferometric measurements of dynamic changes of tear film," J. Biomed. Opt. 11, 034028 (2006). 
  55. F. Santos, M. Vaz, and J. Monteiro, "A new set-up for pulsed digital shearography applied to defect detection in composite structures," Opt. Lasers Eng. 42, 131-140 (2004).  https://doi.org/10.1016/j.optlaseng.2003.07.002
  56. D. Wang, C. Wang, X. Tian, H. Wu, J. Liang, and R. Liang, "Snapshot phase-shifting lateral shearing interferometer," Opt. Lasers Eng. 128, 106032 (2020). 
  57. V.-H.-L. Nguyen, H.-G. Rhee, and Y.-S. Ghim, "Improved iterative method for wavefront reconstruction from derivatives in grid geometry," Curr. Opt. Photonics 6, 1-9 (2022). 
  58. G. Li, Y. Li, K. Liu, X. Ma, and H. Wang, "Improving wavefront reconstruction accuracy by using integration equations with higher-order truncation errors in the Southwell geometry," J. Opt. Soc. Am. A 30, 1448-1459 (2013).  https://doi.org/10.1364/JOSAA.30.001448
  59. Z. Ji, X. Zhang, Z. Zheng, Y. Li, and J. Chang, "Algorithm based on the optimal block zonal strategy for fast wavefront reconstruction," Appl. Opt. 59, 1383-1396 (2020).  https://doi.org/10.1364/AO.380999
  60. F. Dai, F. Tang, X. Wang, O. Sasaki, and P. Feng, "Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms," Appl. Opt. 51, 5028-5037 (2012).  https://doi.org/10.1364/AO.51.005028
  61. I. Mochi and K. A. Goldberg, "Modal wavefront reconstruction from its gradient," Appl. Opt. 54, 3780-3785 (2015).  https://doi.org/10.1364/AO.54.003780
  62. N. Gu, L. Huang, Z. Yang, Q. Luo, and C. Rao, "Modal wavefront reconstruction for radial shearing interferometer with lateral shear," Opt. Lett. 36, 3693-3695 (2011).  https://doi.org/10.1364/OL.36.003693
  63. C. Tian, X. Chen, and S. Liu, "Modal wavefront reconstruction in radial shearing interferometry with general aperture shapes," Opt. Express 24, 3572-3583 (2016).  https://doi.org/10.1364/OE.24.003572
  64. G. Garcia-Torales, G. Paez, and M. Strojnik, "Simulations and experimental results with a vectorial shearing interferometer," Opt. Eng. 40, 767-773 (2001).  https://doi.org/10.1117/1.1360707
  65. T. M. Jeong, D.-K. Ko, and J. Lee, "Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers," Opt. Lett. 32, 232-234 (2007).  https://doi.org/10.1364/OL.32.000232
  66. K. Sugisaki, M. Okada, K. Otaki, Y. Zhu, J. Kawakami, K. Murakami, C. Ouchi, M. Hasegawa, S. Kato, T. Hasegawa, H. Yokota, T. Honda, and M. Niibe, "EUV wavefront measurement of six-mirror optics using EWMS," Proc. SPIE 6921, 69212U (2008). 
  67. D. Ambrosini, D. Paoletti, and N. Rashidnia, "Overview of diffusion measurements by optical techniques," Opt. Lasers Eng. 46, 852-864 (2008).  https://doi.org/10.1016/j.optlaseng.2008.06.008
  68. A. Dubra, C. Paterson, and C. Dainty, "Double lateral shearing interferometer for the quantitative measurement of tear film topography," Appl. Opt. 44, 1191-1199 (2005).  https://doi.org/10.1364/AO.44.001191
  69. D. H. Szczesna and D. R. Iskander, "Lateral shearing interferometry for analysis of tear film surface kinetics," Optom. Vis. Sci. 87, 513-517 (2010).  https://doi.org/10.1097/OPX.0b013e3181e17279
  70. N. Qi, J. Schein, J. Thompson, P. Coleman, M. McFarland, R. R. Prasad, M. Krishnan, B. V. Weber, B. Moosman, J. W. Schumer, D. Mosher, R. J. Commisso, and D. Bell, "Z pinch imploding plasma density profile measurements using a twoframe laser shearing interferometer," IEEE Trans. Plasma Sci. 30, 227-238 (2002).  https://doi.org/10.1109/TPS.2002.1003865
  71. E. O. Baronova, O. A. Bashutin, V. V. Vikhrev, E. D. Vovchenko, E. I. Dodulad, S. P. Eliseev, V. I. Krauz, A. D. Mironenko-Marenkov, V. Y. Nikulin, I. F. Raevskii, A. S. Savelov, S. A. Sarantsev, P. V. Silin, A. M. Stepanenko, Yu. A. Kakutina, and L. A. Dushina, "Study of a cumulative jet in a plasma focus discharge by the method of shearing interferometry," Plasma Phys. Rep. 38, 751-760 (2012).  https://doi.org/10.1134/S1063780X12080065
  72. S. A. Pikuz, V. M. Romanova, N. V. Baryshnikov, M. Hu, B. R. Kusse, D. B. Sinars, T. A. Shelkovenko, and D. A. Hammer, "A simple air wedge shearing interferometer for studying exploding wires," Rev. Sci. Instrum. 72, 1098-1100 (2001).  https://doi.org/10.1063/1.1321746
  73. N. Ramesh and W. Merzkirch, "Combined convective and radiative heat transfer in side-vented open cavities," Int. J. Heat Fluid Flow 22, 180-187 (2001).  https://doi.org/10.1016/S0142-727X(00)00080-1
  74. J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, "Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry," Appl. Opt. 55, 7287-7293 (2016).  https://doi.org/10.1364/AO.55.007287
  75. G. Baffou, "Quantitative phase microscopy using quadriwave lateral shearing interferometry (QLSI): principle, terminology, algorithm and grating shadow description," J. Phys. D.: Appl. Phys. 54, 294002 (2021). 
  76. P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, "Self-interference 3D superresolution microscopy for deep tissue investigations," Nat. Methods 15, 449-454 (2018).  https://doi.org/10.1038/s41592-018-0005-3
  77. K. Lee and Y. Park, "Quantitative phase imaging unit," Opt. Lett. 39, 3630-3633 (2014).  https://doi.org/10.1364/OL.39.003630
  78. S. Monneret, P. Bon, G. Baffou, P. Berto, J. Savatier, S. Aknoun, and H. Rigneault, "Quadriwave lateral shearing interferometry as a quantification tool for microscopy. Application to dry mass determination of living cells, temperature mapping, and vibrational phase imaging," Proc. SPIE 8792, 879209 (2013).