과제정보
The research described in this paper was financially supported by 111 Project of Hubei Province under Grant No. 2021EJD026.
참고문헌
- Acacio, A.A., Kobayashi, Y., Towhata, I. and Bautista, R.T. (2001), "Subsidence of building foundation resting upon liquefiable subsoil case studies", Soils Found., 41(6), 111-128. http://doi.org/10.3208/sandf.41.6_111.
- Adamidis, O. and Madabhushi, S.P.G. (2018), "Deformation mechanisms under shallow foundations on liquefied layers of varying thickness", Geotechniq., 68(7), 1-13. https://doi.org/10.1680/jgeot.17.P.067.
- Adamidis, O. and Madabhushi, S.P.G. (2022), "Rocking response of structures with shallow foundations on thin liquefied layers", Geotechniq., 72(2), 127-145. https://doi.org/10.1680/jgeot.19.P.077.
- Adampira, M. and Derakhshandi, M. (2020), "Influence of a layered liquefiable soil on seismic site response using physical modeling and numerical simulation", Eng. Geol., 266, 105462. https://doi.org/10.1016/j.enggeo.2019.105462.
- Barrios, G., Larkin, T. and Chouw, N. (2021a), "Experimental study of the seismic response of a structure set amongst closely adjacent structures", Earthq. Eng. Struct. Dyn., 50(14), 3771-3791. https://doi.org/10.1002/eqe.3532.
- Barrios, G., Larkin, T. and Chouw, N. (2022), "Influence of excess pore-pressure on the seismic response of single and closely adjacent structures on saturated sand", J. Earthq. Eng., 26(16), 8280-8304. https://doi.org/10.1080/13632469.2021.1991524.
- Barrios, G., Uemura, K., Kikkawa, N., Itoh, K., Larkin, T., Orense, R. and Chouw, N. (2021b), "Dynamic response of stand-alone and adjacent footing on saturated sand", Soil Dyn. Earthq. Eng., 143, 106584. https://doi.org/10.1016/j.soildyn.2021.106584.
- Bray, J.D., Sancio, R.B., Durgunoglu, T., Onalp, A., Youd, T.L., Stewart, J.P., Seed, R.B., Cetin, K.O., Bol, E., Baturay, M.B., Christensen, C. and Karadayilar, T. (2004), "Subsurface characterization at ground failure sites in Adapazari, Turkey", J. Geotech. Geoenviron., 130(7), 673-685. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(673).
- Bray, J.M., Cubrinovski, M., Zupan, J. and Taylor, M. (2014), "Liquefaction effects on buildings in the central business district of Christchurch", Earthq. Spectra, 30(1), 85-109. https://doi.org/10.1193/022113EQS043M.
- Bybordiani, M. and Arici, Y. (2019), "Structure- soil- structure interaction of adjacent buildings subjected to seismic loading", Earthq. Eng. Struct. Dyn., 48(7), 731-748. https://doi.org/10.1002/eqe.3162.
- Cheng, G.X. (1994), "Survey on the interfacial properties of soil and structural materials", J. World Earthq. Eng., 4(1), 1-9.
- Cubrinovski, M., Bradley, B., Wotherspoon, L., Green, R. and Wells, R. (2011), "Geotechnical aspects of the 22 February 2011 Christchurch earthquake", Bull. N.Z. Soc. Earthq., 44(4), 205-226. http://doi.org/10.5459/bnzsee.44.4.205-226.
- Dashti, S. and Bray, J.D. (2013), "Numerical simulation of building response on liquefiable sand", J. Geotech. Geoenviron., 139(8), 1235-1249. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000853.
- Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M. and Wilson, D. (2010), "Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil", J. Geotech. Geoenviron., 136(1), 151-164. https://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000179.
- Goodman, R.E., Taylor, R.L. and Brekke T.L. (1968), "A model for the mechanics of jointed rock", J. Soil Mech. Found. Div., 94(3), 637-660. https://doi.org/10.1061/JSFEAQ.0001133.
- Groby, J.P. and Wirgin, A. (2008), "Seismic motion in urban sites consisting of blocks in welded contact with a soft layer overlying a hard half space", Geophys. J. Int., 172(2), 725-758. https://doi.org/10.1111/j.1365-246X.2007.03678.x.
- Gueguen, P., Bard, P.Y., J,F. and Garcia, C. (2002), "Site-city seismic interaction in Mexico City-like environments: An analytical study", B. Seismol. Soc. Am., 92(2), 794-811. https://doi.org/10.1785/0120000306.
- Hayden, C.P., Zupan, J.D., Bray, J.D., Allmond, J.D. and Kutter, B.L. (2015), "Centrifuge tests of adjacent mat-supported buildings affected by Liquefaction", J. Geotech. Geoenviron., 141(3), 04014118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001253.
- Hu, J.L., Chen, Q.H. and Liu, H.B. (2018), "Relationship between earthquake-induced uplift of rectangular underground structures and the excess pore water pressure ratio in saturated sandy soils", Tunn. Undergr. Sp. Tech., 79, 35-51. https://doi.org/10.1016/j.tust.2018.04.039.
- Huang, Y.L., Ramirez, J., Dashti, S., Kikwood, P., Camata, G. and Petracca, M. (2021), "Seismic interaction of adjacent structures on liquefiable soils: Insight from centrifuge and numerical modeling", J. Geotech. Geoenviron., 147(8), 04021063. https://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0002546.
- Jafariana, Y., Mehrzadb, B., Lee, C.J. and Haddad, A.H. (2017), "Centrifuge modeling of seismic foundation-soil-foundation interaction on liquefiable sand", Soil Dyn. Earthq. Eng., 97, 184-204. https://doi.org/10.1016/j.soildyn.2017.03.019.
- Kassas, K., Adamidis, O. and Anastasopoulos, I. (2022), "Structure-soil-structure interaction (SSSI) of adjacent buildings with shallow foundations on liquefiable soil", Earthq. Eng. Struct. Dyn., 51, 2315-2334. https://doi.org/10.1002/eqe.3665.
- Kirkwood, P. and Dashti, S. (2018), "A centrifuge study of seismic structure-soil-structure interaction on liquefiable ground and implications for design in dense urban areas", Earthq. Spectra, 34(3), 1113-1134. https://doi.org/10.1193/052417EQS095M.
- Lu, C.W., Chu, M.C., Ge, L. and Peng, K.S. (2020), "Estimation of settlement after soil liquefaction for structures built on shallow foundations", Soil Dyn. Earthq. Eng., 129, 105916. https://doi.org/10.1016/j.soildyn.2019.105916.
- Lu, C.W., Gui, M.W. and Lai, S.C. (2014), "A numerical study on soil-group-pile-bridge-pier interaction under the effect of earthquake loading", J. Earthq. Tsunami, 8(1), 1350037. https://doi.org/10.1142/S1793431113500371.
- Miari, M. and Jankowski, R. (2022a), "Analysis of floor-to-column pounding of buildings founded on different soil types", Bull. Earthq. Eng., 20(13), 7241-7262. https://doi.org/10.1007/s10518-022-01482-0.
- Miari, M. and Jankowski, R. (2022b), "Seismic gap between buildings founded on different soil types experiencing pounding during earthquakes", Earthq. Spectra, 38(3), 2183-2206. https://doi.org/10.1177/87552930221082968.
- Miari, M. and Jankowski, R. (2022c), "Shaking table experimental study on pounding between adjacent structures founded on different soil types", Struct., 44, 851-879. https://doi.org/10.1016/j.istruc.2022.08.059.
- Miari, M. and Jankowski, R. (2022d), "Analysis of pounding between adjacent buildings founded on different soil types", Soil Dyn. Earthq. Eng., 154, 107156. https://doi.org/10.1016/j.soildyn.2022.107156.
- Miari, M. and Jankowski, R. (2022e), "Incremental dynamic analysis and fragility assessment of buildings founded on different soil types experiencing structural pounding during earthquakes", Eng. Struct., 252, 113118. https://doi.org/10.1016/j.engstruct.2021.113118.
- Oka, F. (1992), "A cyclic elasto-viscoplastic constitutive model for clay based on the non-linear hardening rule", International Symposium on Numerical Models in Geomechanics, Swansea, UK, August.
- Oka, F., Yashima, A., Shibata, T., Kato, M. and Uzuoka, R. (1994), "FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model", Appl. Sci. Res., 52(3), 209-245. https://doi.org/10.1007/BF00853951.
- Olarte, J., Paramasivam, B., Dashti, S., Liel, A. and Zannin, J. (2017), "Centrifuge modeling of mitigation-soil-foundation-structure interaction on liquefiable ground", Soil Dyn. Earthq. Eng., 97, 304-323. https://doi.org/10.1016/j.soildyn.2017.03.014.
- Ozcebe, A.G., Giretti, D., Bozzoni, F., Fioravante, V. and Lai, C.G. (2021), "Centrifuge and numerical modelling of earthquake-induced soil liquefaction under free-field conditions and by considering soil-structure interaction", B. Earthq. Eng., 19(1), 47-75. https://doi.org/10.1007/s10518-020-00972-3.
- Paramasivam, B., Dashti, S. and Liel, A. (2018), "Influence of prefabricated vertical drains on the seismic performance of structures founded on liquefiable soils", J. Geotech. Geoenviron., 144(10), 04018070. http://dx.chinadoi.cn/10.1061/(ASCE)GT.1943-5606.0001950.
- Serikawa, Y., Miyajima, M., Yoshida, M. and Matsuno, K. (2019), "Inclination of houses induced by liquefaction in the 2018 Hokkaido Iburi-Tobu earthquake", Geoenviron. Disast., 6(1), 1-9. https://doi.org/10.1186/s40677-019-0130-z.
- Sharifi, B., Nouri, G. and Ghanbari, A. (2020), "Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses", Earthq. Struct., 18(6), 667-675. https://doi.org/10.12989/eas.2020.18.6.667.
- Tsai, C.C., Lu, C.C., Hwang, Y.W. and Hsu, S.Y. (2018), "Geotechnical reconnaissance of the 2016 ML6.6 Meinong earthquake in Taiwan", J. Earthq. Eng., 22(9), 1710-1736. https://doi.org/10.1080/13632469.2017.1297271.
- Tsukamoto, Y., Ishihara, K., Sawada, S. and Fujiwara, S. (2012), "Settlement of rigid circular foundations during seismic shaking in shaking table tests", Int. J. Geomech., 4(12), 462-470. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000153.
- Uzuoka, R., Cubrinovski, M., Sugita, H., Sato, M., Tokimatsu, K., Sento, N., Kazama, M., Zhang, F., Yashima, A. and Oka, F. (2008), "Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: Shaking in the direction perpendicular to ground flow", Soil Dyn. Earthq. Eng., 28(6), 436-452. https://doi.org/10.1016/j.soildyn.2007.08.007.
- Wang, J.S., Guo, T. and Du, Z.Y. (2022), "Experimental and numerical study on the influence of dynamic structure-soil-structure interaction on the responses of two adjacent idealized structural systems", J. Build., 52, 104454. https://doi.org/10.1016/j.jobe.2022.104454.