DOI QR코드

DOI QR Code

Seismic damage assessment of a large concrete gravity dam

  • Lounis Guechari (Research Laboratory of Applied Hydraulics and Environment, Faculty of Technology, University of Bejaia) ;
  • Abdelghani Seghir (Research Laboratory of Applied Hydraulics and Environment, Faculty of Technology, University of Bejaia) ;
  • Ouassila Kada (Department of Civil Engineering, Faculty of Technology, University of Bejaia) ;
  • Abdelhamid Becheur (Research Laboratory of Applied Hydraulics and Environment, Faculty of Technology, University of Bejaia)
  • Received : 2022.01.15
  • Accepted : 2023.07.18
  • Published : 2023.08.25

Abstract

In the present work, a new global damage index is proposed for the seismic performance and failure analysis of concrete gravity dams. Unlike the existing indices of concrete structures, this index doesn't need scaling with an ultimate or an upper value. For this purpose, the Beni-Haroun dam in north-eastern Algeria, is considered as a case study, for which an average seismic capacity curve is first evaluated by performing several incremental dynamic analyses. The seismic performance point of the dam is then determined using the N2 method, considering multiple modes and taking into account the stiffness degradation. The seismic demand is obtained from the design spectrum of the Algerian seismic regulations. A series of recorded and artificial accelerograms are used as dynamic loads to evaluate the nonlinear responses of the dam. The nonlinear behaviour of the concrete mass is modelled by using continuum damage mechanics, where material damage is represented by a scalar field damage variable. This modelling, which is suitable for cyclic loading, uses only a single damage parameter to describe the stiffness degradation of the concrete. The hydrodynamic and the sediment pressures are included in the analyses. The obtained results show that the proposed damage index faithfully describes the successive brittle failures of the dam which increase with increasing applied ground accelerations. It is found that minor damage can occur for ground accelerations less than 0.3 g, and complete failure can be caused by accelerations greater than 0.45 g.

Keywords

References

  1. ABAQUS Inc. (2006), ABAQUS Example Problems Manual, SIMULIA, Providence County, RI, USA.
  2. Alembagheri, M. and Ghaemian, M. (2013a), "Incremental dynamic analysis of concrete gravity dams including base and lift joints", Earthq. Eng. Eng. Vib., 12, 119-134. https://doi.org/10.1007/s11803-013-0156-2.
  3. Alembagheri, M. and Ghaemian, M. (2013b), "Seismic assessment of concrete gravity dams using capacity estimation and damage indexes", Earthq. Eng. Struct. Dyn., 42(1), 123-144. https://doi.org/10.1002/eqe.2196.
  4. Alembagheri, M. and Seyedkazemi, M. (2014), "Seismic performance sensitivity and uncertainty analysis of gravity dams", Earthq. Eng. Struct. Dyn., 44(1), 41-58. https://doi.org/10.1002/eqe.2457.
  5. ANB (2002), Barrage de Beni Haroun sur l'Oued Kebir, Technical Report, Agence Nationale des Barrages, Kouba, Algeria.
  6. Ansari, M.I. and Agarwal, P. (2016), "Damage index evaluation of concrete gravity dam based on hysteresis behavior and stiffness degradation under cyclic loading", Int. J. Struct. Stab. Dyn., 16(1), 1750009. https://doi.org/10.1142/S0219455417500092.
  7. Ansari, M.I. and Agarwal, P. (2017), "Effects of re-entrant corner on seismic performance of high concrete gravity dams", Procedia Eng., 173, 1886-1893. https://doi.org/10.1016/j.proeng.2016.12.246.
  8. Ansari, M.I., Saqib, M. and Agarwal, P. (2018), "Geometric configuration effects on nonlinear seismic behavior of concrete gravity dam", J. Earthq. Tsunami, 12(1), 1850003. https://doi.org/10.1142/s1793431118500033.
  9. Arefian, A., Noorzad, A., Ghaemian, M. and Hosseini, A. (2016), "Seismic evaluation of cemented material dams -A case study of Tobetsu Dam in Japan", Earthq. Struct., 10(3), 717-733. https://doi.org/10.12989/eas.2016.10.3.717.
  10. Bojorquez, E., Reyes-Salazar, A., Teran, A. and Ruiz, S. (2010), "Energy-based damage index for steel structures", Steel Compos. Struct., 10(4), 343-360. https://doi.org/10.12989/scs.2010.10.4.331.
  11. Calayir, Y. and Karaton, M. (2005), "A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems", Soil Dyn. Earthq. Eng., 25(11), 857-869. https://doi.org/10.1016/j.soildyn.2005.05.003.
  12. Cao, V.V., Ronagh, H.R., Ashraf, M. and Baji, H. (2014), "A new damage index for reinforced concrete structures", Earthq. Struct., 6(6), 581-609. https://doi.org/10.12989/eas.2014.6.6.581.
  13. Cast3M (2020), Cast3M. A Finite Element Code for Structural Analysis and Fluid Modeling; CEA, Paris, France. http://www-cast3m.cea.fr
  14. CGS (2003), DTR-BC-2.48, RPA, Regles Parasismiques Algeriennes, Ministere de l'Habitat, Centre National de Recherche Appliquee en Genie-Parasismique, Alger, Algeria.
  15. Chakrabarti, P. and Chopra, A.K. (1973), "Earthquake analysis of gravity dams including hydrodynamic interaction", Earthq. Eng. Struct. Dyn., 2(2), 143-160, https://doi.org/10.1002/eqe.4290020205.
  16. Correia Lopes, G., Vicente, R., Ferreira, T.M., Azenha, M. and Estevao, J. (2020), "Displacement-based seismic performance evaluation and vulnerability assessment of buildings: The N2 method revisited", Struct., 24, 41-49. https://doi.org/10.1016/j.istruc.2019.12.028.
  17. Cosenza, E., Manfredi, G. and Polese, M. (2009), "Simplified method to include cumulative damage in the seismic response of single-degree-of-freedom systems", J. Eng. Mech., 135(10), 1081-1088. https://doi.org/10.1061/(asce)0733-9399(2009)135:10(1081).
  18. Di Pasquale, E. and Cakmak, A.S. (1990), "Detection of seismic structural damage using parameter-based global damage indices", Probab. Eng. Mech., 5(2), 60-65. https://doi.org/10.1016/0266-8920(90)90008-8.
  19. Diana, L., Manno, A. and Lestuzzi, A. (2019), "Seismic displacement demand prediction in non-linear domain: Optimization of the N2 method", Earthq. Eng. Eng. Vib., 18, 141-158. https://doi.org/10.1007/s11803-019-0495-8.
  20. Diaz, S.A., Pujades, L.G., Barbat, A.H., Vargas, Y.F. and Hidalgo-Leiva, D.A. (2017), "Energy damage index based on capacity and response spectra", Eng. Struct., 152, 424-436. https://doi.org/10.1016/j.engstruct.2017.09.019.
  21. Fajfar, P. (1999), "Capacity spectrum method based in inelastic demand spectra", Earthq. Eng. Struct. Dyn., 28(1), 979-993. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1.
  22. Fajfar, P. (2000), "A nonlinear analysis method for performance based seismic design", Earthq. Spectra, 16(3), 573-592. https://doi.org/10.1193/1.1586128.
  23. Fajfar, P. and Gaspersic, P. (1996), "The N2 method for the seismic damage analysis of RC buildings", Earthq. Eng. Struct. Dyn., 25(1), 31-46. https://doi.org/10.1002/(SICI)1096-9845(199601)25:1<31::AID-EQE534>3.0.CO;2-V.
  24. Gasparini, D.A. and Vanmarcke, E. (1976), "Simulated earthquake motions compatible with prescribed response spectra", Technical Report R76-4, MIT Department of Civil Engineering, Cambridge, MA, USA.
  25. Hariri-Ardebili, M.A. (2014), "Impact of foundation nonlinearity on the crack propagation of high concrete dams", Soil Mech. Found. Eng., 51(2), 72-82. https://doi.org/10.1007/s11204-014-9257-9.
  26. Hariri-Ardebili, M.A. and Saouma, V. (2014), "Quantitative failure metric for gravity dams", Earthq. Eng. Struct. Dyn., 44(3), 461-480. https://doi.org/10.1002/eqe.2481.
  27. Hariri-Ardebili, M.A., Seyed-Kolbadi, S.M. and Kianoush, M.R. (2016), "FEM-based parametric analysis of a typical gravity dam considering input excitation mechanism", Soil Dyn. Earthq. Eng., 84, 22-43. https://doi.org/10.1016/j.soildyn.2016.01.013.
  28. Inaudi, J.A., Matheu, E.E., Peoppleman, P.L. and Matusevich, A. (2005), "Foundation flexibility effects on the seismic response of concrete gravity dams", 37th Joint Meeting UJNR Panel on Wind and Seismic Effects, Tsukuba, Japan, May.
  29. Lee, J. and Fenves, G.L. (1998), "A plastic-damage concrete model for earthquake analysis of dams", Earthq. Eng. Struct. Dyn., 27(9), 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5.
  30. Lestuzzi, P. (2017), Free Software for Earthquake Engineering and Structural Dynamic, Swiss Federal Institute of Technology Lausanne, Lausanne Switzerland. https://archiveweb.epfl.ch/imac.epfl.ch/research/lestuzzi_pierino_en/lestuzzi_soft_en.html
  31. Lotfi, V. and Samii, A. (2020), "Dynamic analysis of concrete gravity dam-reservoir systems by wave number approach in the frequency domain", Earthq. Struct., 3(3), 533-548. https://doi.org/10.12989/eas.2012.3.3.533.
  32. Mahmoodi, K., Noorzad, A., Mahboubi, A. and Alembagheri, M. (2021), "Seismic performance assessment of a cemented material dam using incremental dynamic analysis", Struct., 29, 1187-1198. https://doi.org/10.1016/j.istruc.2020.12.015.
  33. Memduh, K. and Murat, C. (2020), "Seismic effects of epicenter distance of earthquake on 3D damage performance of CG dams", Earthq. Struct., 18(2), 201-213. https://doi.org/10.12989/eas.2020.18.2.201.
  34. Nahar, T.T., Rahman, M.M. and Kim, D. (2021), "Damage index based seismic risk generalization for concrete gravity dams considering FFDI", Sruct. Eng. Mech., 78(1), 53-66. https://doi.org/10.12989/sem.2021.78.1.053.
  35. Negulescu, C., Wijesundara, K.K. and Foerster, E. (2013), "Seismic damage assessment of regular gravity design buildings", Key Eng. Mater., 569-570, 294-301. https://doi.org/10.4028/www.scientific.net/kem.569-570.294.
  36. Oudni, N. and Bouafia, Y. (2015), "Response of concrete gravity dam by damage model under seismic excitation", Eng. Fail. Anal., 58, 417-428. https://doi.org/10.1016/j.engfailanal.2015.08.020.
  37. Pan, J., Zhang, C., Xu, Y. and Jin, F. (2011), "A comparative study of the different procedures for seismic cracking analysis of concrete dams", Soil Dyn. Earthq. Eng., 31(11), 1594-1606. https://doi.org/10.1016/j.soildyn.2011.06.011.
  38. Quinde, P., Reinoso, E., Teran-Gilmore, A. and Ramos, S. (2019), "Expected damage for SDOF systems in soft soil sites: An energy-based approach", Earthq. Struct., 17(6), 577-590. https://doi.org/10.12989/eas.2019.17.6.577.
  39. Richard, B. and Ragueneau, F. (2013), "Continuum damage mechanics based model for quasi brittle materials subjected to cyclic loadings: Formulation, numerical implementation and applications", Eng. Fract. Mech., 98, 383-406. https://doi.org/10.1016/j.engfracmech.2012.11.013.
  40. Richard, B., Ragueneau, F., Cremona, C. and Adelaide, L. (2010), "Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding", Eng. Fract. Mech., 77(8), 1203-1223. https://doi.org/10.1016/j.engfracmech.2010.02.010.
  41. Seghir, A., Tahakourt, A. and Bonnet, G. (2009), "Coupling FEM and symmetric BEM for dynamic interaction of dam-reservoir systems", Eng. Anal. Bound. Elem., 33(10), 1201-1210. https://doi.org/10.1016/j.enganabound.2009.04.011.
  42. Sen, U. and Okeil, A.M. (2020), "Effect of biaxial stress state on seismic fragility of concrete gravity dams", Earthq. Struct., 18(3), 285-296. https://doi.org/10.12989/eas.2020.18.3.285.
  43. Soysal, B.F., Binici, B. and Arici, Y. (2016), "Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 45(5), 719-737. https://doi.org/10.1002/eqe.2681.
  44. Valamanesh, V., Estekanchi, H., Vafai, A. and Ghaemian, M. (2011), "Application of the endurance time method in seismic analysis of concrete gravity dams", Sci. Iran., 18(3), 326-337. https://doi.org/10.1016/j.scient.2011.05.039.
  45. Westergaard, H.M. (1933), "Water pressures on dams during earthquakes", Trans. Am. Soc. Civil Eng., 98, 418-433. https://doi.org/10.1061/TACEAT.0004496.
  46. Yaghmaei-Sabegh, S., Zafarv, S. and Makaremi, S. (2018), "Evaluation of N2 method for damage estimation of MDOF systems", Earthq. Struct., 14(2), 155-165. https://doi.org/10.12989/eas.2018.14.2.155.
  47. Zhang, S., Wang, G. and Sa, W. (2013), "Damage evaluation of concrete gravity dams under mainshock-aftershock seismic sequences", Soil Dyn. Earthq. Eng., 50, 16-27. https://doi.org/10.1016/j.soildyn.2013.02.021.