DOI QR코드

DOI QR Code

Seismic performance assessment of deteriorated reinforced concrete columns using a new plastic-hinge element

  • Tae-Hoon Kim (Advanced Railroad Civil Engineering Division, Korea Railroad Research Institute) ;
  • Hosung Jung (Smart Electrical and Signaling Division, Korea Railroad Research Institute)
  • Received : 2022.09.01
  • Accepted : 2023.04.12
  • Published : 2023.08.25

Abstract

The purpose of this paper is to numerically assess the seismic performance of deteriorated reinforced concrete columns using a new plastic-hinge element. Developing a three dimensional (3D) nonlinear model can be difficult and computationally complex, and there can be problems applying it in the field. Thus, to solve these problems, a plastic-hinge element that could considers the shear deformation of deteriorated reinforced concrete columns was proposed. The developed element was based on the Timoshenko beam model and used two nodes with six degrees of freedom and a zero-length element. Moreover, the developed model could consider the combined effects of corrosion, as demonstrated by the reduced reinforcement area and the loss of bond. Consequently, the numerical procedures developed for evaluating the seismic performance of deteriorated columns were validated by comparing the verification results.

Keywords

Acknowledgement

This research was supported by a grant from R&D Program (Virtualization-based railway station smart energy management and performance evaluation technology development, PK2203E1) of the Korea Railroad Research Institute.

References

  1. AASHTO (American Association of State Highway and Transportation Officials) (2014), AASHTO LRFD Bridge Design Specifications, 7th Edition. AASHTO, Washington D.C., USA.
  2. Alemdar, Z.F. (2010), "Plastic hinging behavior of reinforced concrete bridge columns", Ph.D. Thesis, University of Kansas, Lawrence, KS, USA.
  3. Al-Harthy, A., Stewart, M.G. and Mullard, J. (2011), "Concrete cover cracking caused by steel reinforcement corrosion", Mag. Concrete Res., 63(9), 655-667. https://doi.org/10.1680/macr.2011.63.9.655.
  4. Bhargava, K., Ghosh, A.K., Mori, Y. and Ramanujam, S. (2007), "Corrosion-induced bond strength degradation in reinforced concrete - Analytical and empirical models", Nucl. Eng. Des. J., 237(11), 1140-1157. https://doi.org/10.1016/j.nucengdes.2007.01.010.
  5. CEN (Comite Europeen de Normalisation) (2004), Eurocode 2: EN 1992-1: Design of Concrete Structures - Part 1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
  6. Ceresa, P., Pertrini, L. and Pinho, R. (2009), "A fibre flexure-shear model for seismic analysis of RC-framed structures", Earthq. Eng. Struct. Dyn., 38(5), 565-586. https://doi.org/10.1002/eqe.894.
  7. Du, Y.G., Clark, L.A. and Chan, A.H.C. (2005), "Effect of corrosion on ductility of reinforcing bars", Mag. Concrete Res., 57(7), 407-419. https://doi.org/10.1680/macr.2005.57.7.407.
  8. Guo, A., Li, H., Ba, X., Guan, X. and Li, H. (2015), "Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment", Eng. Struct., 105, 1-11. https://doi.org/10.1016/j.engstruct.2015.09.031.
  9. Han, Q., Zhou, Y.L., Du, X., Huang, C. and Lee, G.C. (2014), "Experimental and numerical studies on seismic performance of hollow RC bridge columns", Earthq. Struct., 7(3), 251-269. https://doi.org/10.12989/eas.2014.7.3.251.
  10. Kashi, A., Ramezanianpour, A.A. and Moodi, F. (2017), "Experimental study on durability of strengthened corroded RC columns with FRP sheets in tidal zone of marine environment", Comput. Concrete, 19(4), 339-346. https://doi.org/10.12989/cac.2017.19.4.339.
  11. Kim, T.H. (2022), "Seismic performance assessment of deteriorated two-span reinforced concrete bridges", Int. J. Concrete Struct. Mater., 16(2), 123-135. https://doi.org/10.1186/s40069-022-00498-9.
  12. Kim, T.H., Kim, B.S., Chung, Y.S. and Shin, H.M. (2006), "Seismic performance assessment of reinforced concrete bridge piers with lap splices", Eng. Struct., 28(6), 935-945. https://doi.org/10.1016/j.engstruct.2005.10.020.
  13. Kim, T.H., Cheon, J.H. and Shin, H.M. (2012), "Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis", Comput. Concrete, 9(1), 63-79. https://doi.org/10.12989/cac.2012.9.1.063.
  14. Kim, T.H., Kim, Y.J., Kang, H.T. and Shin, H.M. (2007), "Performance assessment of reinforced concrete bridge columns using a damage index", Can. J. Civil Eng., 34(7), 843-855. https://doi.org/10.1139/l07-003.
  15. Kim, T.H., Lee, K.M., Yoon, C.Y. and Shin, H.M. (2003), "Inelastic behavior and ductility capacity of reinforced concrete bridge piers under earthquake. I: Theory and formulation", J. Struct. Eng. ASCE, 129(9), 1199-1207. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:9(1199).
  16. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng. ASCE, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  17. Marini, A. and Spacone, E. (2006), "Analysis of reinforced concrete elements including shear effects", ACI Struct. J., 103(5), 645-655. https://doi.org/10.14359/16916.
  18. MCT (Ministry of Construction and Transportation) (2012), Korean Bridge Design Code (Limit State Design Method), MCT, Seoul, Korea.
  19. Tapan, M. and Aboutaha, R.S. (2009), "Load carrying capacity of deteriorated reinforced concrete columns", Comput. Concrete, 6(6), 473-490. https://doi.org/10.12989/cac.2009.6.6.473.
  20. Taylor, R.L. (2000), FEAP - A Finite Element Analysis Program, Version 7.2 Users Manual, Volume 1 and Volume 2, University of California at Berkeley, Berkeley, CA, USA.
  21. Wang, W., Zhou, F. and Zhong, J. (2022), "An efficient axial-flexure-shear fiber beam model for dynamic analyses of beam-column framed structural systems under impact loading", Ocean Eng., 245, 110349. https://doi.org/10.1016/j.oceaneng.2021.110349.
  22. Xu, J.G., Cai, Z.K. and Feng, D.C. (2021), "Life-cycle seismic performance assessment of aging RC bridges considering multi-failure modes of bridge columns", Eng. Struct., 244, 112818. https://doi.org/10.1016/j.engstruct.2021.112818.
  23. Xu, J.G., Feng, D.C., Wu, G., Cotsovos, D.M. and Lu, Y. (2020a), "Analytical modeling of corroded RC columns considering flexure‑shear interaction for seismic performance assessment", Bull. Earthq. Eng., 18, 2165-2190. https://doi.org/10.1007/s10518-019-00770-6.
  24. Xu, J.G., Feng, D.C., Mangalathu, S. and Jeon, J.S. (2022), "Data-driven rapid damage evaluation for life-cycle seismic assessment of regional reinforced concrete bridges", Earthq. Eng. Struct. Dyn., 51(11), 2730-2751. https://doi.org/10.1002/eqe.3699.
  25. Xu, J.G., Wu, G., Feng, D.C., Cotsovos, D.M. and Lu, Y. (2020b), "Seismic fragility analysis of shear-critical concrete columns considering corrosion induced deterioration effects", Soil Dyn. Earthq. Eng., 134, 106165. https://doi.org/10.1016/j.soildyn.2020.106165.
  26. Ye, Z., Zhang, W. and Gu, X. (2018), "Deterioration of shear behavior of corroded reinforced concrete beams", Eng. Struct., 168, 708-720. https://doi.org/10.1016/j.engstruct.2018.05.023.