DOI QR코드

DOI QR Code

Anti-fatigue effect of tormentic acid through alleviating oxidative stress and energy metabolism-modulating property in C2C12 cells and animal models

  • Ho-Geun Kang (Department of Bio-Convergence System, Graduate School, Hoseo University) ;
  • Jin-Ho Lim (Department of Bio-Convergence System, Graduate School, Hoseo University) ;
  • Hee-Yun Kim (BioChip Research Center, Hoseo University) ;
  • Hyunyong Kim (Department of Science in Korean Medicine, Graduate School, Kyung Hee University) ;
  • Hyung-Min Kim (Department of Science in Korean Medicine, Graduate School, Kyung Hee University) ;
  • Hyun-Ja Jeong (Department of Bio-Convergence System, Graduate School, Hoseo University)
  • 투고 : 2022.11.04
  • 심사 : 2023.02.16
  • 발행 : 2023.08.01

초록

BACKGROUND/OBJECTIVES: Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS: In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS: TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS: TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.

키워드

참고문헌

  1. Ament W, Verkerke GJ. Exercise and fatigue. Sports Med 2009;39:389-422. https://doi.org/10.2165/00007256-200939050-00005
  2. Sechi S, Fiore F, Chiavolelli F, Dimauro C, Nudda A, Cocco R. Oxidative stress and food supplementation with antioxidants in therapy dogs. Can J Vet Res 2017;81:206-16.
  3. Chen WC, Hsu YJ, Lee MC, Li HS, Ho CS, Huang CC, Chen FA. Effect of burdock extract on physical performance and physiological fatigue in mice. J Vet Med Sci 2017;79:1698-706. https://doi.org/10.1292/jvms.17-0345
  4. Hsu YJ, Huang WC, Lin JS, Chen YM, Ho ST, Huang CC, Tung YT. Kefir supplementation modifies gut microbiota composition, reduces physical fatigue, and improves exercise performance in mice. Nutrients 2018;10:862.
  5. Shang H, Cao S, Wang J, Zheng H, Putheti R. Glabridin from Chinese herb licorice inhibits fatigue in mice. Afr J Tradit Complement Altern Med 2009;7:17-23.
  6. Wang L, Zhang HL, Lu R, Zhou YJ, Ma R, Lv JQ, Li XL, Chen LJ, Yao Z. The decapeptide CMS001 enhances swimming endurance in mice. Peptides 2008;29:1176-82. https://doi.org/10.1016/j.peptides.2008.03.004
  7. He Q, Sawada M, Yamasaki N, Akazawa S, Furuta H, Uenishi H, Meng X, Nakahashi T, Ishigaki Y, Moriya J. Neuroinflammation, oxidative stress, and neurogenesis in a mouse model of chronic fatigue syndrome, and the treatment with Kampo medicine. Biol Pharm Bull 2020;43:110-5. https://doi.org/10.1248/bpb.b19-00616
  8. Kawamura T, Muraoka I. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants (Basel) 2018;7:119.
  9. Huang WC, Chiu WC, Chuang HL, Tang DW, Lee ZM, Wei L, Chen FA, Huang CC. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients 2015;7:905-21. https://doi.org/10.3390/nu7020905
  10. Kim HY, Han NR, Kim NR, Lee M, Kim J, Kim CJ, Jeong HJ, Kim HM. Effect of fermented porcine placenta on physical fatigue in mice. Exp Biol Med (Maywood) 2016;241:1985-96. https://doi.org/10.1177/1535370216659945
  11. Mantovani G, Maccio A, Madeddu C, Mura L, Gramignano G, Lusso MR, Mulas C, Mudu MC, Murgia V, Camboni P, et al. Quantitative evaluation of oxidative stress, chronic inflammatory indices and leptin in cancer patients: correlation with stage and performance status. Int J Cancer 2002;98:84-91. https://doi.org/10.1002/ijc.10143
  12. Alessio HM, Hagerman AE, Fulkerson BK, Ambrose J, Rice RE, Wiley RL. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc 2000;32:1576-81. https://doi.org/10.1097/00005768-200009000-00008
  13. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 2007;121:2373-80. https://doi.org/10.1002/ijc.23173
  14. Wang YL, Sun GY, Zhang Y, He JJ, Zheng S, Lin JN. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway. Mol Med Rep 2016;14:3559-64. https://doi.org/10.3892/mmr.2016.5690
  15. Jiang WP, Huang SS, Matsuda Y, Saito H, Uramaru N, Ho HY, Wu JB, Huang GJ. Protective effects of tormentic acid, a major component of suspension cultures of Eriobotrya japonica cells, on acetaminophen-induced hepatotoxicity in mice. Molecules 2017;22:830.
  16. Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa J, Nishino H. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem 2004;68:85-90. https://doi.org/10.1271/bbb.68.85
  17. Park GH, Lee JY, Kim DH, Cho YJ, An BJ. Anti-oxidant and anti-inflammatory effects of Rosa multiform root. J Life Sci 2011;21:1120-6. https://doi.org/10.5352/JLS.2011.21.8.1120
  18. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150:76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  19. Nam SY, Kim HY, Min JY, Kim HM, Jeong HJ. An osteoclastogenesis system, the RANKL/RANK signalling pathway, contributes to aggravated allergic inflammation. Br J Pharmacol 2019;176:1664-79. https://doi.org/10.1111/bph.14615
  20. Kim HY, Kang HG, Nam SY, Kim HM, Jeong HJ. Blockade of RANKL/RANK signaling pathway by epigallocatechin gallate alleviates mast cell-mediated inflammatory reactions. Int Immunopharmacol 2020;88:106872.
  21. Culotta VC, Yang M, O'Halloran TV. Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 2006;1763:747-58. https://doi.org/10.1016/j.bbamcr.2006.05.003
  22. Ho YS, Xiong Y, Ma W, Spector A, Ho DS. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 2004;279:32804-12. https://doi.org/10.1074/jbc.M404800200
  23. Han NR, Kim HY, Kim NR, Lee WK, Jeong H, Kim HM, Jeong HJ. Leucine and glycine dipeptides of porcine placenta ameliorate physical fatigue through enhancing dopaminergic systems. Mol Med Rep 2018;17:4120-30. https://doi.org/10.3892/mmr.2017.8335
  24. Abdelhalim MA, Moussa SA, Qaid HA. The protective role of quercetin and arginine on gold nanoparticles induced hepatotoxicity in rats. Int J Nanomedicine 2018;13:2821-5. https://doi.org/10.2147/IJN.S160995
  25. Liang X, Liu L, Fu T, Zhou Q, Zhou D, Xiao L, Liu J, Kong Y, Xie H, Yi F, et al. Exercise inducible lactate dehydrogenase B regulates mitochondrial function in skeletal muscle. J Biol Chem 2016;291:25306-18. https://doi.org/10.1074/jbc.M116.749424
  26. Kim TW, Park SS, Kim BK, Sim YJ, Shin MS. Effects of sildenafil citrate on peripheral fatigue and exercise performance after exhaustive swimming exercise in rats. J Exerc Rehabil 2019;15:751-6. https://doi.org/10.12965/jer.1938712.356
  27. Filho LF, Menezes PP, Santana DV, Lima BS, Saravanan S, Almeida GK, Filho JE, Santos MM, Araujo AA, de Oliveira ED. Effect of pulsed therapeutic ultrasound and diosmin on skeletal muscle oxidative parameters. Ultrasound Med Biol 2018;44:359-67. https://doi.org/10.1016/j.ultrasmedbio.2017.09.009
  28. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab 2012;2012:960363.
  29. Houmard JA, Costill DL, Mitchell JB, Park SH, Fink WJ, Burns JM. Testosterone, cortisol, and creatine kinase levels in male distance runners during reduced training. Int J Sports Med 1990;11:41-5. https://doi.org/10.1055/s-2007-1024760
  30. Lee JS, Kim HG, Han JM, Kim YA, Son CG. Anti-fatigue effect of Myelophil in a chronic forced exercise mouse model. Eur J Pharmacol 2015;764:100-8. https://doi.org/10.1016/j.ejphar.2015.06.055
  31. Ksontini R, MacKay SL, Moldawer LL. Revisiting the role of tumor necrosis factor alpha and the response to surgical injury and inflammation. Arch Surg 1998;133:558-67. https://doi.org/10.1001/archsurg.133.5.558
  32. Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: friend or foe? J Sport Health Sci 2020;9:415-25. https://doi.org/10.1016/j.jshs.2020.04.001
  33. Emhoff CA, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol 2013;114:297-306. https://doi.org/10.1152/japplphysiol.01202.2012
  34. Hargreaves M. Exercise, muscle, and CHO metabolism. Scand J Med Sci Sports 2015;25 Suppl 4:29-33. https://doi.org/10.1111/sms.12607
  35. Chen WC, Huang WC, Chiu CC, Chang YK, Huang CC. Whey protein improves exercise performance and biochemical profiles in trained mice. Med Sci Sports Exerc 2014;46:1517-24. https://doi.org/10.1249/MSS.0000000000000272
  36. Mika A, Macaluso F, Barone R, Di Felice V, Sledzinski T. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front Physiol 2019;10:26.
  37. Ren Y, Li Y, Lv J, Guo X, Zhang J, Zhou D, Zhang Z, Xue Z, Yang G, Xi Q, et al. Parthenolide regulates oxidative stress-induced mitophagy and suppresses apoptosis through p53 signaling pathway in C2C12 myoblasts. J Cell Biochem 2019;120:15695-708. https://doi.org/10.1002/jcb.28839
  38. Zhu H, Xu W, Wang N, Jiang W, Cheng Y, Guo Y, Yao W, Hu B, Du P, Qian H. Anti-fatigue effect of Lepidium meyenii Walp. (Maca) on preventing mitochondria-mediated muscle damage and oxidative stress in vivo and vitro. Food Funct 2021;12:3132-41. https://doi.org/10.1039/D1FO00383F
  39. Ratkevicius A, Carroll AM, Kilikevicius A, Venckunas T, McDermott KT, Gray SR, Wackerhage H, Lionikas A. H55N polymorphism as a likely cause of variation in citrate synthase activity of mouse skeletal muscle. Physiol Genomics 2010;42A:96-102. https://doi.org/10.1152/physiolgenomics.00066.2010
  40. Shiffman ML, Pockros P, McHutchison JG, Schiff ER, Morris M, Burgess G. Clinical trial: the efficacy and safety of oral PF-03491390, a pancaspase inhibitor - a randomized placebo-controlled study in patients with chronic hepatitis C. Aliment Pharmacol Ther 2010;31:969-78. https://doi.org/10.1111/j.1365-2036.2010.04264.x
  41. Bekker A, Haile M, Kline R, Didehvar S, Babu R, Martiniuk F, Urban M. The effect of intraoperative infusion of dexmedetomidine on the quality of recovery after major spinal surgery. J Neurosurg Anesthesiol 2013;25:16-24. https://doi.org/10.1097/ANA.0b013e31826318af
  42. Hsu YJ, Huang WC, Chiu CC, Liu YL, Chiu WC, Chiu CH, Chiu YS, Huang CC. Capsaicin supplementation reduces physical fatigue and improves exercise performance in mice. Nutrients 2016;8:648.
  43. Qu Y, Ji H, Song W, Peng S, Zhan S, Wei L, Chen M, Zhang D, Liu S. The anti-fatigue effect of the Auxis thazard oligopeptide via modulation of the AMPK/PGC-1α pathway in mice. Food Funct 2022;13:1641-50. https://doi.org/10.1039/D1FO03320D
  44. Huang WC, Chiu WC, Chuang HL, Tang DW, Lee ZM, Wei L, Chen FA, Huang CC. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients 2015;7:905-21. https://doi.org/10.3390/nu7020905
  45. Wu RE, Huang WC, Liao CC, Chang YK, Kan NW, Huang CC. Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules 2013;18:4689-702. https://doi.org/10.3390/molecules18044689