DOI QR코드

DOI QR Code

Evaluation of Physical Properties of Ethylene Vinyl Acetate/Silicone Emulsion for Radon Shielding Prepared by Electron-beam Irradiation

전자선 조사에 의해 제조된 라돈 차폐용 ethylene vinyl acetate/silicone 에멀젼의 물리적 특성 평가

  • Jong-Seok Park (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Jang-Gun Lee (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Sung-In Jeong (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Jun-Pyo Jeon (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Yoon-Mook Lim (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Jae-Hak Choi (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Kap-Soo Kim (Hanyang Construction Co., Ltd.)
  • 박종석 (한국원자력연구원 첨단방사선연구소) ;
  • 이장건 (한국원자력연구원 첨단방사선연구소) ;
  • 정성린 (한국원자력연구원 첨단방사선연구소) ;
  • 전준표 (한국원자력연구원 첨단방사선연구소) ;
  • 임윤묵 (한국원자력연구원 첨단방사선연구소) ;
  • 최재학 (충남대학교 고분자공학과) ;
  • 김갑수 (한양건설(주))
  • Received : 2023.10.26
  • Accepted : 2023.12.08
  • Published : 2023.12.31

Abstract

Radon, a carcinogenic substance generated from soil or building materials, have to be fundamentally blocked from entering indoors. In this study, ethylene vinyl acetate (EVA)/silicone emulsions with excellent mechanical and thermal properties and effective blocking of radon gas were prepared by using radiation technology. As the electron-beam irradiation does increased, a partially crosslinked structure was formed in EVA molecular chain, increasing tensile properties and adhesive strength. The EVA/silicone film showed excellent thermal stability without deformation. In addition, the non-irradiated EVA/silicone film showed a radon blocking rate of about a 75%, while the EVA/silicone film irradiated with 3 and 5 kGy showed an excellent radon blocking rate of over 90% due to the formation of crosslinked structure in the EVA molecular chain. These results indicated that the radiation technology can effectively block radon by forming a partially crosslinked structure of EVA/silicone emulsion to improve tensile property, adhesive strength, and deformation stability.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 방사선안전소재 및 의학기술개발사업(방사선안전소재기술개발사업) (2019MC28A1058044)의 지원받아 수행되었으며, 이에 감사드립니다.

References

  1. Kim IS, Oh HS, Lee KH and Kim CG. 2018. Study of radon management in the environment impact assessment stage. J. Environ. Impact Assess. 27(3):241-250. https://doi.org/10.14249/eia.2018.27.3.241.
  2. Kulali F, Gunay O and Akozcan S. 2019. Determination of indoor radon levels at campuses of uskudar and Okan Universities. Int. J. Environ. Sci. Technol. 16(9):5281-5284. https://doi.org/10.1007/s13762-019-02369-5.
  3. Al-Zoughool M and Krewski D. 2009. Health effects of radon: A review of the literature. Int. J. Radiat. Biol. 85:57-69. https://doi.org/10.1080/09553000802635054.
  4. Hassanvand H, Hassanvand MS, Birjandi M, Kamarehie B and Jafari A. 2018. Indoor radon measurement in dwellings of Khorramabad City. Iranian J. Med. Phys. 15(1):19-27. https://doi.org/10.22038/ijmp.2017.24851.1252.
  5. Park HC, Choi HS, Cho SY and Kim SH. 2014. Numerical study on indoor dispersion of radon emitted from building materials. J. Kor. Soc. Environ. Eng. 36(5):325-332. https://doi.org/10.4491/KSEE.2014.36.5.325.
  6. Hori N, Asai K and Takemura A. 2008. Effect of the ethylene/vinyl acetate ratio of ethylene-vinyl acetate emulsion on the curing behavior of an emulsion polymer isocyanate adhesive for wood. J. Wood Sci. 54:294-299. https://doi.org/10.1007/s10086-008-0951-y.
  7. Poljansek I, Fabjan E, Burja K and Kukanja D. 2013. Emulsion copolymerization of vinyl acetate-ethylene in high pressure reactor-characterization by inline FTIR spectroscopy. Prog. Org. Coat. 76(12):798-1804. https://doi.org/10.1016/j.porgcoat.2013.05.019.
  8. Azizi S, David E, Frechette MF, Nguyen-Tri P and Ouellet-Plamondon CM. 2018. Electrical and thermal conductivity of ethylene vinyl acetate composite with graphene and carbon black filler. Polym. Test. 72:24-31. https://doi.org/10.1016/j.polymertesting.2018.09.031.
  9. Chitra, Sah D, Lodhi K, Kant C, Saini P and Kumar S. 2020. Structural composition and thermal stability of extracted EVA from silicon solar modules waste. Sol. Energy 211(2020):74-81. https://doi.org/10.1016/j.solener.2020.09.039.
  10. Meszaros L, Tabi T, Kovacs JG and Barany T. 2008. The effect of EVA content on the processing parameters and the mechanical properties of LDPE/ground tire rubber blends. Polym. Eng. Sci. 48(5):868-874. https://doi.org/10.1002/pen.21022.
  11. Henderson AM. 1993. Ethylene-vinyl acetate (EVA) copolymers: a general review. IEEE Electr. Insul. Mag. 9(1):30-38. https://doi.org/10.1109/57.249923.
  12. Rosdi MRH and Ariffin A. 2016. Evaluation of flow ability response in EVA emulsion preparation with different vinyl acetate percentage by intrinsic viscosity measurement. Procedia Chem. 19(2016):455-461. https://doi.org/10.1016/j.proche.2016.03.038.
  13. Hirschl C, Biebl-Rydlo M, DeBiasio M, Muhleisen W, Neumaier L, Scherf W, Oreski G, Eder G, Chernev B, Schwab W and Kraft M. 2013. Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants - A comparative study. Sol. Energy Mater. Sol. Cells. 116(2013):203-218. https://doi.org/10.1016/j.solmat.2013.04.022.
  14. Zeng F, Guo X, Sun L, Xuelian H, Zeng Z and Liu Z. 2022. Non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling. RSC Adv. 12(2022):15623-15630. https://doi.org/10.1039/d2ra01994a.
  15. Kaltenegger-Uray A, Riess G, Lucyshyn T, Holzer C and Kern W. 2019. Physical Foaming and Crosslinking of Polyethylene with Modified Talcum. Polymers 11(2019):1472. https://doi.org/10.3390/polym11091472.
  16. Mbarek M, Abbassi F and Alimi K. 2016. The effect of cross-linking yield of PVK on the vibrational and emissive properties of new copolymer based on vinylcarbazole and phenylene-vinylene units. J. Mol. Struct. 1120(2016):125-131. https://doi.org/10.1016/j.molstruc.2016.05.023.
  17. Kazemi-Najafi S and Englund KR. 2013. Effect of Highly Degraded High-Density Polyethylene (HDPE) on Processing and Mechanical Properties of Wood Flour-HDPE Composites. J. Appl. Polym. Sci. 129(6):3404-3410. https://doi.org/10.1002/app.39021.
  18. Jeong JO, Oh YH, Jeong SI and Park JS. 2022. Optimization of the Physical Properties of HDPE/PU Blends through Improved Compatibility and Electron Beam Crosslinking. Polymers 14(2022):3607. https://doi.org/10.3390/polym14173607.
  19. Shin JH, Kim DS, Kim HR, Park JS, Jeong S-I, Jung ST, Nho YC and Choi JH. 2022. Preparation and Characterization of Poly(ethylene-co-vinyl acetate)/High Density Polyethylene/Aluminum Hydroxide Flame Retardant Composites by Electron Beam Irradiation. J. Radiat. Ind. 16(3):181-189. https://doi.org/10.23042/radin.2022.16.3.181.
  20. Zhang Y, Zang C and Jiao Q. 2020. Thermal Stability and Mechanical Property of Vinyl-Functionalized Polyborosiloxane and Silicone Rubber. J. Phys.: Conf. Ser. 1637(1):012051. https://doi.org/10.1088/1742-6596/1637/1/012051.
  21. Han R, Li Y, Zhu Q and Niu K. 2022. Research on the preparation and thermal stability of silicone rubber composites: A review. Compos. Pt. C-Open Access 8(2022):100249. https://doi.org/10.1016/j.jcomc.2022.100249.
  22. Park JS, Jeong JO, Kim YA, Jeong SI and Lim YB. 2020. Effect of the type and content of additives on the physical characterization of poly (acrylic acid)/silicone hydrogel prepared by electron-beam irradiation. J. Radiat. Ind. 14(4):327-333. https://doi.org/10.23042/radin.2020.14.4.327.
  23. Fuke CA, Mahanwar PA and Chowdhury SR. 2019. Modified ethylene-propylene-diene elastomer (EPDM)-contained silicone rubber/ethylene-propylene-diene elastomer (EPDM) blends: Effect of composition and electron beam crosslinking on mechanical, heat shrinkability, electrical, and morphological properties. J. Appl. Polym. Sci. 136(29):47787. https://doi.org/10.1002/app.47787.
  24. Fresneda M, Trujillo-Cayado LA, Carmen Garcia M, Alfaro-Rodriguez MC and Munoz J. 2020. Production of more sustainable emulsions formulated with eco-friendly materials. J. Clean. Prod. 243(2020):118661. https://doi.org/10.1016/j.jclepro.2019.118661.
  25. Kim JI and Kim HD. 2014. Emulsion viscosity with oil polartity and interpretation by organic conceptual diagram. J. Korean Oil Chem. Soc. 31(4):623-627. https://doi.org/10.12925/jkocs.2014.31.4.623.
  26. Kim EH and Choi SS. 2015. Comparison of vinyl acetate contents of poly (ethylene-co-vinyl acetate) analyzed by IR, NMR, and TGA. Elastom. Compos. 50(1):18-23. https://doi.org/10.7473/EC.2015.50.1.018.