DOI QR코드

DOI QR Code

Evaluation of Minimum Detectable Activity for Underwater Radiation Monitoring System

수중 방사선 모니터링 시스템의 성능평가를 위한 수중 내 최소검출가능농도 산출

  • Jangguen Park (Radioisotope Research Division, Korea Atomic Energy Research Institute) ;
  • Sung-Hee Jung (Radioisotope Research Division, Korea Atomic Energy Research Institute) ;
  • Daemin Oh (Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jinho Moon (Radioisotope Research Division, Korea Atomic Energy Research Institute)
  • 박장근 (한국원자력연구원 동위원소연구부) ;
  • 정성희 (한국원자력연구원 동위원소연구부) ;
  • 오대민 (한국건설기술연구원 환경연구본부) ;
  • 문진호 (한국원자력연구원 동위원소연구부)
  • Received : 2023.05.12
  • Accepted : 2023.09.12
  • Published : 2023.09.30

Abstract

A high-efficiency underwater radiation monitoring system, HydroGamma, has been developed for detecting 137Cs and 131I in the event of waterborne radiation contamination. The system consists of a 3-inch NaI (Tl) detector, solar panels for power supply, data acquisition and transmission modules, and batteries. HydroGamma also includes a 40K calibration source for remote performance evaluation and energy calibration. In this study, some simulations and experiments were carried out to evaluate the minimum detectable activities (MDA) of HydroGamma. We installed the HydroGamma at Tapjeongho Lake in Nonsan-si and acquired background data since MDA is calculated based on the experimental background data. The results show that the minimum detectable activities for 137Cs and 131I were 1.78Bq L-1 and 1.81Bq L-1, respectively even though the gamma rays emitted from 40K(1,460 keV) affect the minimum detectable activities for them.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국원자력연구원 주요사업(방사성동위원소 응용 표준화기술 개발, 524440-23), 공공수요 기반 혁신제품 개발·실증사업(NRF-2021M3E8A2100652), 국가과학기술연구회 창의형 융합사업(No. CAP-15-07-KICT)의 일환으로 수행되었습니다.

References

  1. OECD-NEA. 2002. CHERNOBYL: Assessment of Radiological and Health Impacts.
  2. NISA/METI. 2011. INES (the International Nuclear and Radiological Event Scale) Rating on the Events in Fukushima Dai-ichi Nuclear Power Station by the Tohoku District - off the Pacific Ocean Earthquake.
  3. Oh DM, Kang SW, Kim YS, Jung SH, Moon JH and Park JG. 2017. Flow Characteristics Analysis of the Decontamination Device with Mixing and Diffusion Using Radio-Isotopes Tracer. J. Korean Soc. Environ. Eng. 39(5):282-287. https://doi.org/10.4491/KSEE.2017.39.5.282
  4. Lee KY, Kim YJ, Cho SY and Yoon YY. 2006. Optimal Method of Radon Analysis in Groundwater using Ultra Low-Level Liquid Scintillation Counter. J. Soil Groundw. Environ. 11(5):59-66.
  5. Tsabaris C, Bagatelas C, Dakladas T, Papadopoulos CT, Vlastou R and Chronis GT. 2008. An autonomous in situ detection system for radioactivity measurements in the marine environment. Appl. Radiat. Isot. 66:1419-1426. https://doi.org/10.1016/j.apradiso.2008.02.064
  6. Bagatelas C, Tsabaris C, Kokkoris M, Papadopoulos CT and Vlastou R. 2010. Determination of marine gamma activity and study of the minimum detectable activity (MDA) in 4pi geometry based on Monte Carlo simulation. Environ. Monit. Assess. 165:159-168. https://doi.org/10.1007/s10661-009-0935-4
  7. Zhang Y, Li C, Liu D, Zhang Y and Liu Y. 2015. Monte Carlo simulation of a NaI (Tl) detector for in situ radioactivity measurements in the marine environment. Appl. Radiat. Isot. 98:44-48. https://doi.org/10.1016/j.apradiso.2015.01.009
  8. Zeng Z, Pan X, Ma H, He J, Cang J, Zeng M, Mi Y and Cheng J. 2017. Optimization of an underwater in-situ LaBr3:Ce spectrometer with energy self-calibration and efficiency calibration. Appl. Radiat. Isot. 121:101-108. https://doi.org/10.1016/j.apradiso.2016.12.016
  9. Park JG, Jung SH, Moon JH, Oh DM, Kang SW and Kim YS. 2018. Determination of Effective Detection Distance and Minimum Detectable Activity for Radiation Monitoring System in Water. J. Radiat. Ind. 12(1):11-14. https://doi.org/10.23042/radin.2018.12.1.11
  10. Knoll GF. 2011. Radiation Detection and Measurement. Fourth Edition. 321pp. John Wiley & Sons, Inc., New York.
  11. Park JG, Jung SH, Moon JH, Kang SW, Oh DM and Kim YS. 2020. Determination of Activity Conversion Factor and Minimum Detectable Activity for Underwater Radiation Monitoring System. J. Radiat. Ind. 14(2):173-177. https://doi.org/10.23042/radin.2020.14.2.173
  12. Pelowitz DB. 2013. MCNP6TM USER'S MANUAL Version 1.0. Los Almos National Laboratory, California, U.S.A.
  13. Currie LA. 1986. Limits for qualitative detection and quantitative determination application to radiochemistry. Anal. Chem. 40(3):586-593. https://doi.org/10.1021/ac60259a007