과제정보
The author is grateful to acknowledge that this study is financially supported by the Ministry of Science and Technology, Taiwan, R.O.C., under Grant No. MOST-109-2221-E-027-002.
참고문헌
- Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct., 85(7-8), 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004.
- Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., NorthHolland, Amsterdam.
- Chang, S.Y. (2001), "Analytical study of the superiority of the momentum equations of motion for impulsive loads", Comput. Struct., 79(15), 1377-1394. https://doi.org/10.1016/S0045-7949(01)00044-X.
- Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech., ASCE, 128(9), 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935).
- Chang, S.Y. (2006), "Accurate representation of external force in time history analysis", J. Eng. Mech., ASCE, 132(1), 34-45. https://doi.org/10.1061/(ASCE\)0733-9399(2006)132:1(34).
- Chang, S.Y. (2007b), "Improved explicit method for structural dynamics", J. Eng. Mech., ASCE, 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748).
- Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Meth. Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452.
- Chang, S.Y. (2010), "A new family of explicit method for linear structural dynamics", Comput. Struct., 88(11-12), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002.
- Chang, S.Y. (2013), "An explicit structure-dependent algorithm for pseudo-dynamic testing", Eng. Struct., 46, 511-525. https://doi.org/10.1016/j.engstruct.2012.08.009.
- Chang, S.Y. (2014), "A family of non-iterative integration methods with desired numerical dissipation", Int. J. Numer. Meth. Eng., 100(1), 62-86. https://doi.org/10.1002/nme.4720.
- Chang, S.Y. (2015), "Dissipative, non-iterative integration algorithms with unconditional stability for mildly nonlinear structural dynamics", Nonlin. Dyn., 79(2), 1625-1649. https://doi.org/10.1007/s11071-014-1765-7.
- Chang, S.Y. (2018), "An unusual amplitude growth property and its remedy for structure-dependent integration methods", Comput. Meth. Appl. Mech. Eng., 330, 498-521. https://doi.org/10.1016/j.cma.2017.11.012.
- Chang, S.Y. (2019), "A dual family of dissipative structure-dependent integration methods", Nonlin. Dyn., 98(1), 703-734. https://doi.org/10.1007/s11071-019-05223-y.
- Chang, S.Y. (2020a), "An eigen-based theory for structure-dependent integration methods for nonlinear dynamic analysis", Int. J. Struct. Stab. Dyn., 20(12), 2050130. https://doi.org/10.1142/S0219455420501308.
- Chang, S.Y. (2020b), "Non-iterative methods for dynamic analysis of nonlinear velocity-dependent problems", Nonlin. Dyn., 101, 1473-1500. https://doi.org/10.1007/s11071-020-05836-8.
- Chang, S.Y. and Mahin, S.A. (1993), "Two new implicit algorithms of pseudodynamic test methods", J. Chin. Inst. Eng., 16(5), 651-664. https://doi.org/10.1080/02533839.1993.9677539.
- Chang, S.Y., (2007a), "Enhanced, unconditionally stable explicit pseudodynamic algorithm", J. Eng. Mech., ASCE, 133(5), 541-554. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:5(541).
- Chen, C. and Ricles, J.M. (2008), "Development of direct integration algorithms for structural dynamics using discrete control theory", J. Eng. Mech., ASCE, 134(8), 676-683. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(676).
- Chung, J. and Hulbert, G.M. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-a method", J. Appl. Mech., 60(6), 371-375. https://doi.org/10.1115/1.2900803.
- Clough, R. and Penzien, J. (2003), Dynamics of Structures, 3rd Edition, Computers & Structures, Inc., New York.
- Dubey, G. and Kumar, S. (2015), "Efficient methods for integrating weight function: A comparative analysis", Struct. Eng. Mech., 55(4), 885-900. http://doi.org/10.12989/sem.2015.55.4.885.
- Formica, G., Vaiana, N., Rosati, L. and Lacarbonara, W. (2021), "Pathfollowing of high-dimensional hysteretic systems under periodic forcing", Nonlin. Dyn., 103, 3515-3528. https://doi.org/10.1007/s11071-021-06374-7.
- Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elasto-dynamics", Comput. Meth. Appl. Mech. Eng., 2, 69-97. https://doi.org/10.1016/0045-7825(73)90023-6.
- Gui, Y., Wang, J.T., Jin, F., Chen, C. and Zhou, M.X. (2014), "Development of a family of explicit algorithms for structural dynamics with unconditional stability", Nonlin. Dyn., 77(4), 1157-1170. https://doi.org/10.1007/s11071-014-1368-3.
- Hilber, H.M. and Hughes, T.J.R. (1978), "Collocation, dissipation, and 'overshoot' for time integration schemes in structural dynamics", Earthq. Eng. Struct. Dyn., 6, 99-118. https://doi.org/10.1002/eqe.4290060111.
- Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5, 283-292. https://doi.org/10.1002/eqe.4290050306.
- Houbolt, J.C. (1950), "A recurrence matrix solution for the dynamic response of elastic aircraft", J. Aeronaut. Sci., 17, 540-550. https://doi.org/10.2514/8.1722.
- Hughes, T.J. and Pister, K.S. (1978), "Consistent linearization in mechanics of solids and structures", Comput. Struct., 8(3-4), 391-397. https://doi.org/10.1016/0045-7949(78)90183-9.
- Jator, S.N. (2015), "Implicit third derivative Runge-Kutta-Nystrom method with trigonometric coefficients", Numer. Algorithm., 70, 133-150. https://doi.org/10.1007/s11075-014-9938-5.
- Kara, D., Bozdogan, K.B. and Keskin, E. (2021), "A simplified method for free vibration analysis of wall frames considering soil structure interaction", Struct. Eng. Mech., 77(1), 37-46. http://doi.org/10.12989/sem.2021.77.1.037.
- Kolay, C. and Ricles, J.M. (2014), "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation", Earthq. Eng. Struct. Dyn., 43, 1361-1380. https://doi.org/10.1002/eqe.2401.
- Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Extended implicit integration process by utilizing nonlinear dynamics in finite element", Struct. Eng. Mech., 64(4), 495-464. https://doi.org/10.12989/sem.2017.64.4.495.
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
- Pellecchia, D., Vaiana, N., Spizzuoco, M., Serino, G. and Rosati, L. (2023), "Axial hysteretic behaviour of wire rope isolators: Experiments and modelling", Mater. Des., 225, 111436. https://doi.org/10.1016/j.matdes.2022.111436.
- Rezaiee-Pajand, M., Esfehani, S.A.H. and Karimi-Rad, M. (2018), "Highly accurate family of time integration method", Struct. Eng. Mech., 67(6), 603-614. https://doi.org/10.12989/sem.2018.67.6.603.
- Simos, T.E. (1998), "An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions", Comput. Phys. Commun., 115, 1-8. https://doi.org/10.1016/S0010-4655(98)00088-5.
- Soroushian, A. (2018), "A general rule for the influence of physical damping on the numerical stability of time integration analysis", J. Appl. Comput. Mech., 4(5), 467-481. https://doi.org/10.22055/JACM.2018.25161.1235.
- Tang, Y. and Lou, M.L. (2017), "New unconditionally stable explicit integration algorithm for real-time hybrid testing", J. Eng. Mech., ASCE, 143(7), 04017029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001235.
- Vaiana, N., Marmo, F., Sessa, S. and Rosati, L. (2020), "Modeling of the hysteretic behavior of wire rope isolators using a novel rate-independent model", Nonlinear Dynamics of Structures, Systems and Devices: Proceedings of the First International Nonlinear Dynamics Conference (NODYCON 2019), I, 309-317
- Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "An alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15, 1562-1566. https://doi.org/10.1002/nme.1620151011.