DOI QR코드

DOI QR Code

Cyclic flexural behavior of RC members reinforced with Forta-Ferro and Polyvinyl Alcohol fibers

  • Hamed Rajabzadeh Gatabi (Department of Civil Engineering, Faculty of Engineering, Eastern Mediterranean University) ;
  • Habib Akbarzadeh Bengar (Department of Civil Engineering, University of Mazandaran) ;
  • Murude Celikag (Department of Civil Engineering, Faculty of Engineering, Eastern Mediterranean University)
  • Received : 2022.06.06
  • Accepted : 2023.07.10
  • Published : 2023.08.25

Abstract

This paper presents findings from an experimental study that was focused on evaluating the use of Forta-Ferro (FF) and Polyvinyl Alcohol (PVA) fibers on the response of moderate and special ductility beams under load cycles. For this reason, eight full-scale specimens, identical in geometry, were subjected to gradual cyclic loading. The specimens included two plain concrete beams with medium and special ductility, three beams with medium ductility and stirrup spacing of one-quarter the effective depth (d/4) and three beams with special ductility, and stirrup spacing of one-half the effective depth (d/2), strengthened with FF and PVA fibers separately. The use of fibers was aimed at reducing the amount of shear reinforcement in flexural members. Here, the variation of parameters including the maximum strength, ultimate strength, stiffness, ductility, damage index, energy dissipation, and equivalent damping was studied. Utilizing FF and PVA fibers improved the performance in beams with moderate ductility when compared to those beams with special ductility. Therefore, in special ductility beams, fibers can be used instead of crossties and in moderate ductility beams, fibers can be added to reduce the ratio of shear reinforcement. Furthermore, increasing the stirrup spacing in the moderate ductility beams from d/4 to d/2 and adding 0.6% FF or 1.5% PVA fibers resulted in behavior similar to those of the moderate ductility beam.

Keywords

References

  1. Abrahamson, N., Amin, N., Bardet, J., Goltz, J., Lam, I., Meyer, J., Moehle, J., O'Rourke, M., Tseng, W. and Uzarski, J. (1999), "The Chi-Chi, Taiwan earthquake of September 21, 1999", EERI Special Earthquake Report.
  2. ACI Committee 318-19 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, American Concrete Institute, Farmington Hills, Michigan, USA.
  3. ACI Committee 374.1-05 (2005), Acceptance Criteria for Moment Frames based on Structural Testing and Commentary (ACI 374.1-05), American Concrete Institute, Farmington Hills, Michigan, USA.
  4. Al-Salloum, Y.A., Almusallam, T.H., Alsayed, S.H. and Siddiqui, N.A. (2011), "Seismic behavior of as-built, ACI-complying, and CFRP-repaired exterior RC beam-column joints", J. Compos. Constr., 15(4), 522-534. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000186.
  5. ASCE (2007), Seismic Rehabilitation of Existing Buildings.
  6. Atahan, H.N., Pekmezci, B.Y. and Tuncel, E.Y. (2013), "Behavior of PVA fiber-reinforced cementitious composites under static and impact flexural effects", J. Mater. Civil Eng., 25(10), 1438-1445. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000691.
  7. Awodiji, C.T.G., Onwuka, D.O. and Sule, S. (2021), "Forecasting the shear strength of binary blended concrete containing hydrated lime using artificial intelligence", J. Soft Comput. Civil Eng., 5(2), 135-151. https://doi.org/10.22115/scce.2021.275318.1285.
  8. Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R. (2010), "Experimental evaluation of fiber reinforced concrete fracture properties", Compos. Part B: Eng., 41(1), 17-24. https://doi.org/10.1016/j.compositesb.2009.09.002.
  9. Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2008), "Stress-strain behavior of steel fiber-reinforced concrete in compression", J. Mater. Civil Eng., 20(3), 255-263. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255).
  10. Blanco, A., Pujadas, P., De la Fuente, A., Cavalaro, S. and Aguado, A. (2016), "Influence of the type of fiber on the structural response and design of FRC slabs", J. Struct. Eng., 142(9), 04016054. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001515.
  11. Cadoni, E., Meda, A. and Plizzari, G.A. (2009), "Tensile behaviour of FRC under high strain-rate", Mater. Struct., 42(9), 1283-1294. https://doi.org/10.1617/s11527-009-9527-6.
  12. Canbolat, B.A., Parra-Montesinos, G.J. and Wight, J.K. (2005), "Experimental study on seismic behavior of high-performance fiber-reinforced cement composite coupling beams", ACI Struct. J., 102(1), 159.
  13. Chalioris, C.E. (2013a), "Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure", Constr. Build. Mater., 43, 317-336. https://doi.org/10.1016/j.conbuildmat.2013.02.039.
  14. Chalioris, C.E. (2013b), "Steel fibrous RC beams subjected to cyclic deformations under predominant shear", Eng. Struct., 49, 104-118. https://doi.org/10.1016/j.engstruct.2012.10.010
  15. Code, P. (2005), Eurocode 8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings, European Committee for Standardization.
  16. Dashti, J. and Nematzadeh, M. (2020a), "Compressive and direct tensile behavior of concrete containing Forta-Ferro fiber and calcium aluminate cement subjected to sulfuric acid attack with optimized design", Constr. Build. Mater., 253, 118999. https://doi.org/10.1016/j.conbuildmat.2020.118999.
  17. Dashti, J. and Nematzadeh, M. (2020b), "Flexural behavior of GFRP bar-reinforced calcium aluminate cement concrete beams containing forta-ferro fibers in acidic environment", Constr. Build. Mater., 265, 120602. https://doi.org/10.1016/j.conbuildmat.2020.120602.
  18. de la Cruz, J., Segura, I., Pujadas, P., Torrents, J. and de la Fuente, A. (2022), "Non-destructive test approach for assessing the amount of fibre in polymeric fibre reinforced concrete", Constr. Build. Mater., 317, 125964. https://doi.org/10.1016/j.conbuildmat.2021.125964.
  19. Deng, P., Kakuma, K., Mitamura, H. and Matsumoto, T. (2021), "Fatigue analysis of partly damaged RC slabs repaired with overlaid UHPFRC", Struct. Eng. Mech., 75(1), 19-32. https://doi.org/10.12989/sem.2020.75.1.019.
  20. Elwood, K.J., Matamoros, A.B., Wallace, J.W., Lehman, D.E., Heintz, J.A., Mitchell, A.D., Moore, M.A., Valley, M.T., Lowes, L.N. and Comartin, C.D.J.E.S. (2007), "Update to ASCE/SEI 41 concrete provisions", Earthq. Spectra, 23(3), 493-523. https://doi.org/10.1193/1.2757714.
  21. Gatabi, H.R., Celikag, M. and Bengar, H.A. (2020), "An experimental study on the behavior of fiber-reinforced concrete flexural members under cyclic loading", IOP Conf. Ser.: Mater. Sci. Eng.. 800, 012017. https://doi.org/10.1088/1757-899x/800/1/012017.
  22. Hasan-Nattaj, F. and Nematzadeh, M. (2017), "The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica", Constr. Build. Mater., 137, 557-572. https://doi.org/10.1016/j.conbuildmat.2017.01.078.
  23. Haskett, M., Mohamed Sadakkathulla, M., Oehlers, D., Guest, G., Pritchard, T., Sedev, V. and Stapleton, B. (2012), "Deflection of GFRP and PVA fibre reinforced concrete beams", Proceedings of the 6th International Conference on FRP Composites in Civil Engineering, CICE2012, 1-8.
  24. Hwang, S.K. and Yun, H.D. (2004), "Effects of transverse reinforcement on flexural behaviour of high-strength concrete columns", Eng. Struct., 26(1), 1-12. https://doi.org/10.1016/j.engstruct.2003.08.004.
  25. Institute, E.E.R. (1999), "The Athens, Greece earthquake of September 7, 1999", EERI Special Earthquake Report.
  26. Irshidat, M.R. and Al-Shannaq, A. (2018), "Using textile reinforced mortar modified with carbon nano tubes to improve flexural performance of RC beams", Compos. Struct., 200, 127-134. https://doi.org/10.1016/j.compstruct.2018.05.088.
  27. Jimenez, J.I., Villarreal, J.I., Centeno, M.R., Gonzalez, B.G., Correa, J.J.G., Acevedo, C.R. and Salazar, I.S. (1999), "Tehuacan, Mexico, Earthquake of June 15, 1999", Seismolog. Res. Lett., 70(6), 698-704. https://doi.org/10.1785/gssrl.70.6.698
  28. Jin, Z. and Wang, C.Y. (2013), "Effect of PVA fiber on mechanical properties of high-performance concrete", Appl. Mech. Mater., 438, 249-252. https://doi.org/10.4028/www.scientific.net/AMM.438-439.249.
  29. Kim, H.S. and Shin, Y.S. (2011), "Flexural behavior of reinforced concrete (RC) beams retrofitted with hybrid fiber reinforced polymers (FRPs) under sustaining loads", Compos. Struct., 93(2), 802-811. https://doi.org/10.1016/j.compstruct.2010.07.013.
  30. Kim, S., Jung, H., Kim, Y. and Park, C. (2018), "Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC", Struct. Eng. Mech., 65(2), 163-171. https://doi.org/10.12989/sem.2018.65.2.163.
  31. Lin, Q., Li, S.C. and Zhu, Y. (2021), "Analysis of hysteresis rule of energy-saving block and invisible multi-ribbed frame composite wall", Struct. Eng. Mech., 77(2), 261-272. https://doi.org/10.12989/sem.2021.77.2.261.
  32. Ling, Y., Zhang, P., Wang, J. and Chen, Y. (2019), "Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2", Constr. Build. Mater., 229, 117068. https://doi.org/10.1016/j.conbuildmat.2019.117068.
  33. Meza, A., Pujadas, P., Meza, L.M., Pardo-Bosch, F. and Lopez-Carreno, R.D. (2021), "Mechanical optimization of concrete with recycled pet fibres based on a statistical-experimental study", Mater., 14(2), 240. https://doi.org/10.3390/ma14020240.
  34. Nematzadeh, M. and Fallah-Valukolaee, S. (2017), "Erosion resistance of high-strength concrete containing forta-ferro fibers against sulfuric acid attack with an optimum design", Constr. Build. Mater., 154, 675-686. https://doi.org/10.1016/j.conbuildmat.2017.07.180.
  35. Nematzadeh, M. and Hasan-Nattaj, F. (2017), "Compressive stress-strain model for high-strength concrete reinforced with forta-ferro and steel fibers", J. Mater. Civil Eng., 29(10), 04017152. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001990.
  36. Park, R. (1989), "Evaluation of ductility of structures and structural assemblages from laboratory testing", Bull. NZ Soc. Earthq. Eng., 22(3), 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166.
  37. Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, John Wiley & Sons.
  38. Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.
  39. Park, Y.J. and Ang, A.H.S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722).
  40. Paulay, T. and Priestley, M.N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings, Vol. 768, Wiley, New York.
  41. Prestandard, F. (2000), "Commentary for the seismic rehabilitation of buildings (FEMA356)", Washington, DC: Federal Emergency Management Agency, 7(2).
  42. Priestley, M. and Park, R. (1987), "Strength and ductility of concrete bridge columns under seismic loading", ACI Struct. J., 84(1), 61-76.
  43. Priestley, M.N. and MacRae, G.A. (1996), "Seismic tests of precast beam-to-column joint subassemblages with unbonded tendons", PCI J., 41(1), 64-81. https://doi.org/10.15554/pcij.01011996.64.81
  44. Priestley, M.N., Seible, F. and Calvi, G.M. (1996), Seismic Design and Retrofit of Bridges, John Wiley & Sons.
  45. Pujadas, P., Blanco, A., Cavalaro, S. and Aguado, A. (2014a), "Plastic fibres as the only reinforcement for flat suspended slabs: Experimental investigation and numerical simulation", Constr. Build. Mater., 57, 92-104. https://doi.org/10.1016/j.conbuildmat.2014.01.082.
  46. Pujadas, P., Blanco, A., Cavalaro, S.H.P., Aguado, A., Grunewald, S., Blom, K. and Walraven, J.C. (2014b), "Plastic fibres as the only reinforcement for flat suspended slabs: Parametric study and design considerations", Constr. Build. Mater., 70, 88-96. https://doi.org/10.1016/j.conbuildmat.2014.07.091.
  47. Rajabzadeh Gatabi, H., Celikag, M. and Akbarzadeh Bengar, H. (2021), "Experimental investigation of steel fibers effect on the cyclic behavior of flexural members with moderate ductility", Struct., 34, 2530-2543. https://doi.org/10.1016/j.istruc.2021.09.022.
  48. Rashiddadash, P., Ramezanianpour, A.A. and Mahdikhani, M. (2014), "Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice", Constr. Build. Mater., 51, 313-320. https://doi.org/10.1016/j.conbuildmat.2013.10.087.
  49. Sezen, H. (2000), Structural Engineering Reconnaissance of the August 17, 1999 Earthquake: Kocaeli (Izmit), Pacific Earthquake Engineering Research Center, Turkey,
  50. Sheikh, S.A. and Khoury, S.S. (1993), "Confined concrete columns with stubs", ACI Struct. J., 90 414-414.
  51. Song, Z., Konietzky, H. and Cai, X. (2021), "Modulus degradation of concrete exposed to compressive fatigue loading: Insights from lab testing", Struct. Eng. Mech., 78(3), 281-296. https://doi.org/10.12989/sem.2021.78.3.281.
  52. Stoll, F., Saliba, J.E. and Casper, L.E. (2000), "Experimental study of CFRP-prestressed high-strength concrete bridge beams", Compos. Struct., 49(2), 191-200. https://doi.org/10.1016/S0263-8223(99)00134-8.
  53. Thomas, J. and Ramaswamy, A. (2007), "Mechanical properties of steel fiber-reinforced concrete", J. Mater. Civil Eng., 19(5), 385-392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385).
  54. Wang, J., Dai, Q., Si, R. and Guo, S. (2018), "Investigation of properties and performances of Polyvinyl Alcohol (PVA) fiber-reinforced rubber concrete", Constr. Build. Mater., 193, 631-642. https://doi.org/10.1016/j.conbuildmat.2018.11.002.
  55. Yu, K., Wang, Y., Yu, J. and Xu, S. (2017), "A strain-hardening cementitious composites with the tensile capacity up to 8%", Constr. Build. Mater., 137, 410-419. https://doi.org/10.1016/j.conbuildmat.2017.01.060.
  56. Zanotti, C., Borges, P.H.R., Bhutta, A. and Banthia, N. (2017), "Bond strength between concrete substrate and metakaolin geopolymer repair mortar: Effect of curing regime and PVA fiber reinforcement", Cement Concrete Compos., 80, 307-316. https://doi.org/10.1016/j.cemconcomp.2016.12.014.
  57. Zhao, J., Liang, J., Chu, L. and Shen, F. (2018), "Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement", Mater., 11(9), 1682. https://doi.org/10.3390/ma11091682.