DOI QR코드

DOI QR Code

Experimental and numerical study of Persian brick masonry barrel vaults under probable structural hazards

  • Saeid Sinaei (Department of Civil Engineering, Najafabad Branch, Islamic Azad University) ;
  • Esmaeel Izadi Zaman Abadi (Department of Civil Engineering, Najafabad Branch, Islamic Azad University) ;
  • Seyed Jalil Hoseini (Department of Civil Engineering, Najafabad Branch, Islamic Azad University)
  • 투고 : 2023.04.19
  • 심사 : 2023.06.15
  • 발행 : 2023.08.25

초록

Understanding and analysing the behaviour and response of historical structures in the face of climate changes and environmental conditions is of utmost significance for their preservation. There are several structural hazards associated with climate and hydrology changes in the region, including the settlement of piers, the rotation of piers, and temperature changes. The present study investigates the experimental and numerical structural behaviour of skewed and non-skewed Persian brick masonry barrel vaults under various conditions. The external loading conditions included pier rotation in five modes, settlement, and temperature variations in four states. Initially, the experiments extracted the mechanical properties of the scaled materials. Then, three semi-circular brick barrel vaults were tested with gravitational loads. The outcomes were used to develop and validate the finite element model. Following the development of the finite element model, numerical and parametric studies were conducted on the effect of the aforementioned structural hazards on the response of brick masonry barrel vaults with various Persian geometries (semi-circular, drop pointed, and four-centred), angles of skew (0, 15, 30, and 45 degrees), and dimensional ratios. According to the findings, the fragility of masonry materials makes historical structures susceptible to failure under different loading. A brick barrel vault fails in the presence of minor rotation and settlement of the piers. The four-centred geometric shape has the lowest performance among the seven Persian geometries; therefore, its health monitoring and retrofitting should be prioritised. In Isfahan, Iran, temperature variations, particularly during the warm seasons, cause critical conditions in such structures.

키워드

참고문헌

  1. Andreini, M., De Falco, A. and Sassu, M. (2014), "Stress-strain curves for masonry materials exposed to fire action", Fire Saf. J., 69, 43-56. https://doi.org/10.1016/j.firesaf.2014.08.005.
  2. Artar, M., Coban, K., Yurdakul, M., Can, O., Yilmaz, F. and Yildiz, M.B. (2019), "Investigation on seismic isolation retrofit of a historical masonry structure", Earthq. Struct., 16(4), 501-512. https://doi.org/10.12989/eas.2019.16.4.501.
  3. Augusthus-Nelson, L., Swift, G., Melbourne, C., Smith, C. and Gilbert, M. (2018), "Large-scale physical modelling of soil-filled masonry arch bridges", Int. J. Phys. Model. Geotech., 18(2), 81-94. https://doi.org/10.1680/jphmg.16.00037.
  4. Augusthus-Nelson, L., Swift, G.M., Smith, C.C., Gilbert, M. and Melbourne, C. (2018), "Influence of railway loading on the performance of soil-filled masonry arch bridges", Proceedings of the Institution of Civil Engineers-Bridge Engineering, 171(4), 276-289. https://doi.org/10.1680/jbren.17.00027
  5. Basic Analysis Guide for ANSYS 19 (2017), SAS IP Inc., New York.
  6. Betti, M., Orlando, M. and Vignoli, A. (2011), "Static behaviour of an Italian Medieval Castle: Damage assessment by numerical modelling", Comput. Struct., 89(21-22), 1956-1970. https://doi.org/10.1016/j.compstruc.2011.05.022.
  7. BSI (British Standards Institute) (1983), Testing Concrete Part 121: Method for Determination of Static Modulus of Elasticity in Compression, BS EN 1881-121: 1983, London, UK.
  8. BSI (British Standards Institute) (1998), Methods of Test for Masonry, Part 1: Determination of Compressive Strength, BS EN 1052-1: 1998, London, UK.
  9. BSI (British Standards Institute) (1999), Methods of Test for Masonry-Part 2: Determination of Flexural Strength, BS EN 1052-2: 1999, London, UK.
  10. BSI (British Standards Institute), (2014), Gypsum binder and gypsum plasters part 2: Test Methods. BS EN 13279-2: 2014, London, UK: BSI.
  11. Chen, W. and Han, D. (1988), Yield and Failure Criteria, Plasticity for Structural Engineers, Springer.
  12. De Santis, S., Roscini, F. and de Felice, G. (2019), "Strengthening of masonry vaults with textile reinforced mortars", Structural Analysis of Historical Constructions, Springer.
  13. Dehghan, S., Najafgholipour, M., Baneshi, V. and Rowshanzamir, M. (2018), "Mechanical and bond properties of solid clay brick masonry with different sand grading", Constr. Build. Mater., 174, 1-10. https://doi.org/10.1016/j.conbuildmat.2018.04.042.
  14. Dell'Endice, A., Iannuzzo, A., DeJong, M.J., Van Mele, T. and Block, P. (2021), "Modelling imperfections in unreinforced masonry structures: Discrete element simulations and scale model experiments of a pavilion vault", Eng. Struct., 228, 11149. https://doi.org/10.1016/j.engstruct.2020.111499
  15. Devanand, R., Prashanth, S., Devi, P.L., Chethan, B., Amar, R. and Harsha, H. (2022), "Assessment of embodied energy of masonry building materials in Hassan", Mater. Today: Proc., 80, 685-694. https://doi.org/10.1016/j.matpr.2022.11.069.
  16. Fazeli, H., Izadi Zaman Abadi, E. and Hosseini, S.J. (2022), "Experimental and numerical study of the effect of steel Tie-rods on load-bearing capacity of Persian brick arches", Struct., 48, 64-78. https://doi.org/10.1016/j.istruc.2022.12.038.
  17. Ferraioli, M., Lavino, A., Abruzzese, D., Mandara, A. and Avossa, A.M. (2023), "Seismic vulnerability analysis and structural rehabilitation of a historical masonry tower", Procedia Struct. Integr., 44, 1092-1099. https://doi.org/10.1016/j.prostr.2023.01.141.
  18. Ghezelbash, A., Beyer, K., Dolatshahi, K.M. and Yekrangnia, M. (2020), "Shake table test of a masonry building retrofitted with shotcrete", Eng. Struct., 219, 110912. https://doi.org/10.1016/j.engstruct.2020.110912.
  19. Grillanda, N., Chiozzi, A., Milani, G. and Tralli, A. (2021), "Three-dimensional analysis of masonry vaults subjected to differential settlements", AIP Conference Proceedings, 2343(1), AIP Publishing. https://doi.org/10.1063/5.0048511.
  20. Guner, Y., Ozturk, D., Ercan, E. and Nuhoglu, A. (2022), "Investigation on the masonry vault by experimental and numerical approaches", Earthq. Struct., 23(1), 13. https://doi.org/10.12989/eas.2022.23.1.013.
  21. Hejazi, M., Baranizadeh, S. and Daei, M. (2021), "Performance of Persian brick masonry single-shell domes subjected to uniform pressure and concentrated load", Struct., 34, 1710-1719. https://doi.org/10.1016/j.istruc.2021.08.100.
  22. Hejazi, M., Moayedian, S.M. and Daei, M. (2015), "Structural analysis of Persian historical brick masonry minarets under wind load", J. Solid Fluid Mech., 5(1), 165-176. https://doi.org/10.22044/jsfm.2015.420.
  23. Hejazi, M. and Pourabedin, M. (2021), "Performance of Persian brick masonry discontinuous double-shell domes against earthquakes", Eng. Fail. Anal., 119, 104994. https://doi.org/10.1016/j.engfailanal.2020.104994.
  24. Hejazi, M. and Sadeghi, R. (2022), "Effect of brick arrangement on structural behaviour of Persian brick masonry barrel vaults by micro-modelling", Eng. Fail. Anal., 134, 106033. https://doi.org/10.1016/j.engfailanal.2022.106033.
  25. Hejazi, M. and Saradj, F.M. (2014), Persian Architectural Heritage: Architecture, Structure and Conservation, WIT press, London, UK.
  26. Hejazi, M. and Soltani, Y. (2020), "Parametric study of the effect of hollow spandrel (Konu) on structural behaviour of Persian brick masonry barrel vaults", Eng. Fail. Anal., 118, 104838. https://doi.org/10.1016/j.engfailanal.2020.104838.
  27. Hejazi, M.M. and Saradj, F.M. (2014), Persian Architectural Heritage: Structure, WIT Press, London, UK.
  28. Historical Tornadoes (2003), National Weather Service, Toronto.
  29. Kvande, T. and Liso, K.R. (2009), "Climate adapted design of masonry structures", Build. Environ., 44(12), 2442-2450. https://doi.org/10.1016/j.buildenv.2009.04.007.
  30. Mahmoudi, P., Asadi, P. and Eftekhar, M.R. (2022), "The effect of geometric dimensions on the lateral bearing capacity of the masonry arches", Struct., 45, 1350-1365. https://doi.org/10.1016/j.istruc.2022.09.059.
  31. Milani, G. and Lourenco, P.B. (2012), "3D non-linear behavior of masonry arch bridges", Comput. Struct., 110, 133-150. https://doi.org/10.1016/j.compstruc.2012.07.008.
  32. Moayedian, S.M. and Hejazi, M. (2021), "Stress-strain relationships for scaled gypsum mortar and cement mortar brick masonry", J. Build. Eng., 33, 101861. https://doi.org/10.1016/j.jobe.2020.101861.
  33. Mohammed, A., Hughes, T. and Mustapha, A. (2011), "The effect of scale on the structural behaviour of masonry under compression", Constr. Build. Mater., 25(1), 303-307. https://doi.org/10.1016/j.conbuildmat.2010.06.025.
  34. Naggasa, A., Augusthus Nelson, L. and Haynes, B. (2018), "Use of finite element analysis to investigate the structural behaviour of masonry arch bridges subject to foundation settlement", The 10th International Masonry Conference.
  35. Nazar, M.E. and Sinha, S. (2006), "Influence of bed joint orientation on interlocking grouted stabilised mud-flyash brick masonry under cyclic compressive loading", Struct. Eng. Mech., 24(5), 585-599. https://doi.org/10.12989/sem.2006.24.5.585.
  36. Pescari, S., Budau, L. and Vilceanu, C. B. (2023), "Rehabilitation and restauration of the main facade of historical masonry building-romanian national opera timisoara", Case Stud. Constr. Mater., 18, e01838. https://doi.org/10.1016/j.cscm.2023.e01838.
  37. Pineda, P., D Robador, M. and A Gil-Marti, M. (2011), "Seismic damage propagation prediction in ancient masonry structures: an application in the non-linear range via numerical models", Open Constr. Build. Technol. J., 5(1), 71. http://doi.org/10.2174/1874836801105010071.
  38. Rossi, M., Calderini, C., Roselli, I., Mongelli, M., De Canio, G. and Lagomarsino, S. (2020), "Seismic analysis of a masonry cross vault through shaking table tests: The case study of the Dey Mosque in Algiers", Earthq. Struct., 18(1), 57-72. https://doi.org/10.12989/eas.2020.18.1.057.
  39. Sanchez-Beitia, S. (2013), "Analysis of the collapse mechanisms in uncracked arches: The role of friction forces and stereotomy in masonry", Eng. Fail. Anal., 35, 326-333. https://doi.org/10.1016/j.engfailanal.2013.02.021.
  40. Takbash, M.R., Morshedi, A.A.A. and Sabet, S.A. (2018), "Experimental investigation into brick masonry arches'(vault and rib cover) behavior reinforced by FRP strips under vertical load", Struct. Eng. Mech., 67(5), 481-492. https://doi.org/10.12989/sem.2018.67.5.481.
  41. Willam, K.J. (1975), "Constitutive model for the triaxial behaviour of concrete", IABSE Seminar on Concrete Structure subjected Triaxial Stresses, 19, 1-30.
  42. Zampieri, P., Simoncello, N. and Pellegrino, C. (2018), "Structural behaviour of masonry arch with no-horizontal springing settlement", Frattura ed Integrita Strutturale, 12(43), 182-190. https://doi.org/10.3221/IGF-ESIS.43.14.
  43. Zomarshidi, H. (1988). Vault and Arch in Iranian Architecture, Keihan, Tehran, Iran. (in Persian)