DOI QR코드

DOI QR Code

ON THE STRUCTURE OF CERTAIN SUBSET OF FAREY SEQUENCE

  • Xing-Wang Jiang (Department of Mathematics Luoyang Normal University) ;
  • Ya-Li Li (School of Mathematics and Statistics Henan University)
  • Received : 2022.06.09
  • Accepted : 2023.03.30
  • Published : 2023.07.31

Abstract

Let Fn be the Farey sequence of order n. For S ⊆ Fn, let 𝓠(S) be the set of rational numbers x/y with x, y ∈ S, x ≤ y and y ≠ 0. Recently, Wang found all subsets S of Fn with |S| = n + 1 for which 𝓠(S) ⊆ Fn. Motivated by this work, we try to determine the structure of S ⊆ Fn such that |S| = n and 𝓠(S) ⊆ Fn. In this paper, we determine all sets S ⊆ Fn satisfying these conditions for n ∈ {p, 2p}, where p is prime.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundations of China, Grant Nos. 12171243, 11901156 and 12201281, and the Natural Science Foundation of Youth of Henan Province, Grant No. 222300420245.

References

  1. R. Balasubramanian and K. Soundararajan, On a conjecture of R. L. Graham, Acta Arith. 75 (1996), no. 1, 1-38. https://doi.org/10.4064/aa-75-1-1-38
  2. R. Boyle, On a problem of R. L. Graham, Acta Arith. 34 (1977/78), no. 2, 163-177. https://doi.org/10.4064/aa-34-2-163-177
  3. Y. F. Cheng and C. Pomerance, On a conjecture of R. L. Graham, Rocky Mountain J. Math. 24 (1994), no. 3, 961-975. https://doi.org/10.1216/rmjm/1181072382
  4. R. L. Graham, Unsolved problem 5749, Amer. Math. Mon. 77 (1970), 775.
  5. M. Szegedy, The solution of Graham's greatest common divisor problem, Combinatorica 6 (1986), no. 1, 67-71. https://doi.org/10.1007/BF02579410
  6. W. Y. V'elez, Some remarks on a number theoretic problem of Graham, Acta Arith. 32 (1977), no. 3, 233-238. https://doi.org/10.4064/aa-32-3-233-238
  7. L. Wang, Farey sequence and Graham's conjectures, J. Number Theory 229 (2021), 399-404. https://doi.org/10.1016/j.jnt.2020.10.013
  8. R. Winterle, A problem of R. L. Graham in combinatorial number theory, in Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1970), 357-361, Louisiana State Univ., Baton Rouge, LA, 1970.
  9. A. Zaharescu, On a conjecture of Graham, J. Number Theory 27 (1987), no. 1, 33-40. https://doi.org/10.1016/0022-314X(87)90048-5