DOI QR코드

DOI QR Code

ANNIHILATOR IDEALS OF SIMPLE MODULES OF RESTRICTED QUANTIZED ENVELOPING ALGEBRA

  • Yu Wang (School of Mathematics and Physics Jiangsu University of Technology)
  • Received : 2022.07.03
  • Accepted : 2023.03.30
  • Published : 2023.07.31

Abstract

Let U be the restricted quantized enveloping algebra Ũq(𝖘𝖑2) over an algebraically closed field of characteristic zero, where q is a primitive 𝑙-th root of unity (with 𝑙 being odd and greater than 1). In this paper we show that any indecomposable submodule of U under the adjoint action is generated by finitely many special elements. Using this result we describe all ideals of U. Moreover, we classify annihilator ideals of simple modules of U by generators.

Keywords

Acknowledgement

The author would like to express gratitude to Professor Libin Li for his helpful suggestions and constructive comments. The author also wishes to thank the reviewer for his or her careful review.

References

  1. S. Catoiu, Ideals of the enveloping algebra U(sl2), J. Algebra 202 (1998), no. 1, 142-177. https://doi.org/10.1006/jabr.1997.7284 
  2. V. Chari and A. A. Premet, Indecomposable restricted representations of quantum sl2, Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 335-352. https://doi.org/10.2977/prims/1195166137 
  3. J. L. Fisher and S. K. Sehgal, Principal ideal group rings, Comm. Algebra 4 (1976), no. 4, 319-325. https://doi.org/10.1080/00927877608822109 
  4. E. Jespers and J. Okninski, Semigroup algebras that are principal ideal rings, J. Algebra 183 (1996), no. 3, 837-863. https://doi.org/10.1006/jabr.1996.0241 
  5. C. Kassel, Quantum Groups, Springer, New York, 1995. https://doi.org/10.1007/978-1-4612-0783-2 
  6. T. Kerler, Mapping class group actions on quantum doubles, Comm. Math. Phys. 168 (1995), no. 2, 353-388. http://projecteuclid.org/euclid.cmp/1104272363  104272363
  7. H. Kondo and Y. Saito, Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to sl2, J. Algebra 330 (2011), 103-129. https://doi.org/10.1016/j.jalgebra.2011.01.010 
  8. L. B. Li and P. Zhang, Weight property for ideals of Uq(sl(2)), Comm. Algebra 29 (2001), no. 11, 4853-4870.  https://doi.org/10.1081/AGB-100106790
  9. S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993. https://doi.org/10.1090/cbms/082 
  10. K. Morita, On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1951), 177-194. 
  11. D. S. Passman, Observations on group rings, Comm. Algebra 5 (1977), no. 11, 1119-1162. https://doi.org/10.1080/00927877708822213 
  12. S. Siciliano and H. Usefi, Enveloping algebras that are principal ideal rings, J. Pure Appl. Algebra 221 (2017), no. 10, 2573-2581. https://doi.org/10.1016/j.jpaa.2017.01.003 
  13. D. Su and S. Yang, Representation rings of small quantum groups Ūq,/sub>(sl2), J. Math. Phys. 58 (2017), no. 9, 091704, 24 pp. https://doi.org/10.1063/1.4986839 
  14. R. Suter, Modules over Uq(sl2), Comm. Math. Phys. 163 (1994), no. 2, 359-393. http://projecteuclid.org/euclid.cmp/1104270468  104270468
  15. Y. Wang, Classification of ideals of 8-dimensional Radford Hopf algebra, Czechoslovak Math. J. 72(147) (2022), no. 4, 1019-1028. https://doi.org/10.21136/CMJ.2022.0313-21 
  16. Y. Wang, Annihilator ideals of indecomposable modules of finite-dimensional pointed Hopf algebras of rank one, Algebra Colloq., to appear. Available at https://arxiv.org/abs/2205.14603v2 (2022), 21 pages. 
  17. Y. Wang, Z. H. Wang, and L. B. Li, Ideals of finite-dimensional pointed Hopf algebras of rank one, Algebra Colloq. 28 (2021), no. 2, 351-360. https://doi.org/10.1142/S1005386721000274 
  18. Y. Wang, Y. Zheng, and L. B. Li, On the ideals of the Radford Hopf algebras, Comm. Algebra 49 (2021), no. 10, 4109-4122. https://doi.org/10.1080/00927872.2021.1914073 
  19. J. Xiao, Finite-dimensional representations of Ut(sl(2)) at roots of unity, Canad. J. Math. 49 (1997), no. 4, 772-787. https://doi.org/10.4153/CJM-1997-038-4