Acknowledgement
The author would like to express gratitude to Professor Libin Li for his helpful suggestions and constructive comments. The author also wishes to thank the reviewer for his or her careful review.
References
- S. Catoiu, Ideals of the enveloping algebra U(sl2), J. Algebra 202 (1998), no. 1, 142-177. https://doi.org/10.1006/jabr.1997.7284
- V. Chari and A. A. Premet, Indecomposable restricted representations of quantum sl2, Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 335-352. https://doi.org/10.2977/prims/1195166137
- J. L. Fisher and S. K. Sehgal, Principal ideal group rings, Comm. Algebra 4 (1976), no. 4, 319-325. https://doi.org/10.1080/00927877608822109
- E. Jespers and J. Okninski, Semigroup algebras that are principal ideal rings, J. Algebra 183 (1996), no. 3, 837-863. https://doi.org/10.1006/jabr.1996.0241
- C. Kassel, Quantum Groups, Springer, New York, 1995. https://doi.org/10.1007/978-1-4612-0783-2
- T. Kerler, Mapping class group actions on quantum doubles, Comm. Math. Phys. 168 (1995), no. 2, 353-388. http://projecteuclid.org/euclid.cmp/1104272363 104272363
- H. Kondo and Y. Saito, Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to sl2, J. Algebra 330 (2011), 103-129. https://doi.org/10.1016/j.jalgebra.2011.01.010
- L. B. Li and P. Zhang, Weight property for ideals of Uq(sl(2)), Comm. Algebra 29 (2001), no. 11, 4853-4870. https://doi.org/10.1081/AGB-100106790
- S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993. https://doi.org/10.1090/cbms/082
- K. Morita, On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1951), 177-194.
- D. S. Passman, Observations on group rings, Comm. Algebra 5 (1977), no. 11, 1119-1162. https://doi.org/10.1080/00927877708822213
- S. Siciliano and H. Usefi, Enveloping algebras that are principal ideal rings, J. Pure Appl. Algebra 221 (2017), no. 10, 2573-2581. https://doi.org/10.1016/j.jpaa.2017.01.003
- D. Su and S. Yang, Representation rings of small quantum groups Ūq,/sub>(sl2), J. Math. Phys. 58 (2017), no. 9, 091704, 24 pp. https://doi.org/10.1063/1.4986839
- R. Suter, Modules over Uq(sl2), Comm. Math. Phys. 163 (1994), no. 2, 359-393. http://projecteuclid.org/euclid.cmp/1104270468 104270468
- Y. Wang, Classification of ideals of 8-dimensional Radford Hopf algebra, Czechoslovak Math. J. 72(147) (2022), no. 4, 1019-1028. https://doi.org/10.21136/CMJ.2022.0313-21
- Y. Wang, Annihilator ideals of indecomposable modules of finite-dimensional pointed Hopf algebras of rank one, Algebra Colloq., to appear. Available at https://arxiv.org/abs/2205.14603v2 (2022), 21 pages.
- Y. Wang, Z. H. Wang, and L. B. Li, Ideals of finite-dimensional pointed Hopf algebras of rank one, Algebra Colloq. 28 (2021), no. 2, 351-360. https://doi.org/10.1142/S1005386721000274
- Y. Wang, Y. Zheng, and L. B. Li, On the ideals of the Radford Hopf algebras, Comm. Algebra 49 (2021), no. 10, 4109-4122. https://doi.org/10.1080/00927872.2021.1914073
- J. Xiao, Finite-dimensional representations of Ut(sl(2)) at roots of unity, Canad. J. Math. 49 (1997), no. 4, 772-787. https://doi.org/10.4153/CJM-1997-038-4