과제정보
The authors are very grateful to the referee for his (or her) helpful suggestions and comments.
참고문헌
- L. Abreu and N. J. Faustino, On Toeplitz operators and localization operators, Proc. Amer. Math. Soc. 143 (2015), no. 10, 4317-4323. https://doi.org/10.1090/proc/12211
- S. Axler and D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998), no. 2, 387-400. https://doi.org/10.1512/iumj.1998.47.1407
- W. Bauer and J. B. Isralowitz, Compactness characterization of operators in the Toeplitz algebra of the Fock space Fpα, J. Funct. Anal. 263 (2012), no. 5, 1323-1355. https://doi.org/10.1016/j.jfa.2012.04.020
- L. A. Coburn, The Bargmann isometry and Gabor-Daubechies wavelet localization operators, in Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), 169-178, Oper. Theory Adv. Appl., 129, Birkhauser, Basel, 2001.
- L. A. Coburn, J. B. Isralowitz, and B. Li, Toeplitz operators with BMO symbols on the Segal-Bargmann space, Trans. Amer. Math. Soc. 363 (2011), no. 6, 3015-3030. https://doi.org/10.1090/S0002-9947-2011-05278-5
- E. Cordero and K. Grochenig, Time-frequency analysis of localization operators, J. Funct. Anal. 205 (2003), no. 1, 107-131. https://doi.org/10.1016/S0022-1236(03)00166-6
- I. C. Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inform. Theory 34 (1988), no. 4, 605-612. https://doi.org/10.1109/18.9761
- M. Englis, Toeplitz operators and group representations, J. Fourier Anal. Appl. 13 (2007), no. 3, 243-265. https://doi.org/10.1007/s00041-006-6009-x
- M. Englis, Toeplitz operators and localization operators, Trans. Amer. Math. Soc. 361 (2009), no. 2, 1039-1052. https://doi.org/10.1090/S0002-9947-08-04547-9
- H. G. Feichtinger and K. Nowak, A Szeg˝o-type theorem for Gabor-Toeplitz localization operators, Michigan Math. J. 49 (2001), no. 1, 13-21. https://doi.org/10.1307/mmj/1008719032
- M.-L. Lo, The Bargmann transform and windowed Fourier localization, Integr. Equ. Oper. Theory 57 (2007), no. 3, 397-412. https://doi.org/10.1007/s00020-006-1462-0
- D. H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), no. 2, 345-368. https://doi.org/10.1016/0022-1236(87)90072-3
- D. Suarez, A generalization of Toeplitz operators on the Bergman space, J. Operator Theory 73 (2015), no. 2, 315-332. https://doi.org/10.7900/jot.2013nov28.2023
- X. F. Wang, G. F. Cao, and K. Zhu, Boundedness and compactness of operators on the Fock space, Integr. Equ. Oper. Theory 77 (2013), no. 3, 355-370. https://doi.org/10.1007/s00020-013-2066-0
- K. Zhu, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20 (1988), no. 2, 329-357. https://doi.org/10.1016/0022-1236(88)90100-0
- K. Zhu, Operator theory in function spaces, second edition, Mathematical Surveys and Monographs, 138, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/surv/138
- K. Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, 263, Springer, New York, 2012. https://doi.org/10.1007/978-1-4419-8801-0