과제정보
This work was financially supported by NSFC(11671283) and NSFC(11401493).
참고문헌
- M. Auslander and M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, RI, 1969.
- S. Bazzoni, M. Cortes-Izurdiaga, and S. Estrada, Periodic modules and acyclic complexes, Algebr. Represent. Theory 23 (2020), no. 5, 1861-1883. https://doi.org/10.1007/s10468-019-09918-z
- D. Bennis, (n, m)-SG rings, Arab. J. Sci. Eng. ASJE. Math. 35 (2010), no. 2D, 169-178. https://doi.org/10.4064/cm121-1-4
- D. Bennis and F. Couchot, On 1-semiregular and 2-semiregular rings, J. Algebra Appl. 20 (2021), no. 12, Paper No. 2150221, 21 pp. https://doi.org/10.1142/S0219498821502212
- D. Bennis, K. Hu, and F. Wang, On 2-SG-semisimple rings, Rocky Mountain J. Math. 45 (2015), no. 4, 1093-1100. https://doi.org/10.1216/RMJ-2015-45-4-1093
- D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra 210 (2007), no. 2, 437-445. https://doi.org/10.1016/j.jpaa.2006.10.010
- D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl. 8 (2009), no. 2, 219-227. https://doi.org/10.1142/S021949880900328X
- D. Bennis and N. Mahdou, First, second, and third change of rings theorems for Gorenstein homological dimensions, Comm. Algebra 38 (2010), no. 10, 3837-3850. https://doi.org/10.1080/00927870903286868
- D. Bennis, N. Mahdou, and K. Ouarghi, Rings over which all modules are strongly Gorenstein projective, Rocky Mountain J. Math. 40 (2010), no. 3, 749-759. https://doi.org/10.1216/RMJ-2010-40-3-749
- D. Chen, F. Wang, H. Jian, and M. Chen, Structure of modules over 2-strongly Gorenstein semisimple ring with its application, J. Shandong Univ. Nat. Sci. 53 (2018) no. 4, 24-30.
- E. E. Enochs and Z. Huang, Canonical filtrations of Gorenstein injective modules, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2415-2421. https://doi.org/10.1090/S0002-9939-2010-10686-X
- E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. https://doi.org/10.1515/9783110803662
- Z. Gao, Weak Gorenstein projective, injective and flat modules, J. Algebra Appl. 12 (2013), no. 2, 1250165, 15 pp. https://doi.org/10.1142/S0219498812501654
- H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
- K. Hu, H. Kim, F. Wang, L. Xu, and D. Zhou, On strongly Gorenstein hereditary rings, Bull. Korean Math. Soc. 56 (2019), no. 2, 373-382. https://doi.org/10.4134/BKMS.b180249
- K. Hu, J. W. Lim, and D. C. Zhou, Some change of rings results on (n, m)-SG modules and (n, m)-SG rings, Comm. Algebra 48 (2020), no. 9, 4037-4050. https://doi.org/10.1080/00927872.2020.1754843
- K. Hu and F. Wang, Some results on Gorenstein Dedekind domains and their factor rings, Comm. Algebra 41 (2013), no. 1, 284-293. https://doi.org/10.1080/00927872.2011.629268
- K. Hu, F. Wang, L. Xu, and D. Zhou, Quasi-strongly Gorenstein projective modules, J. Algebra Appl. 18 (2019), no. 10, 1950182, 13 pp. https://doi.org/10.1142/S0219498819501822
- A. Iacob, Gorenstein Homological Algebra, CRC Press, Boca Raton, FL, 2019.
- N. Mahdou and M. Tamekkante, On (strongly) Gorenstein (semi) hereditary rings, Arab. J. Sci. Eng. 36 (2011), no. 3, 431-440. https://doi.org/10.1007/s13369-011-0047-7