DOI QR코드

DOI QR Code

SOME RESULTS ON 2-STRONGLY GORENSTEIN PROJECTIVE MODULES AND RELATED RINGS

  • Dong Chen (School of Electronic Information and Electrical Engineering Chengdu University) ;
  • Kui Hu (College of Science Southwest University of Science and Technology)
  • 투고 : 2022.06.07
  • 심사 : 2022.10.28
  • 발행 : 2023.07.31

초록

In this paper, we give some results on 2-strongly Gorenstein projective modules and related rings. We first investigate the relationship between strongly Gorenstein projective modules and periodic modules and then give the structure of modules over strongly Gorenstein semisimple rings. Furthermore, we prove that a ring R is 2-strongly Gorenstein hereditary if and only if every ideal of R is Gorenstein projective and the class of 2-strongly Gorenstein projective modules is closed under extensions. Finally, we study the relationship between 2-Gorenstein projective hereditary and 2-Gorenstein projective semisimple rings, and we also give an example to show the quotient ring of a 2-Gorenstein projective hereditary ring is not necessarily 2-Gorenstein projective semisimple.

키워드

과제정보

This work was financially supported by NSFC(11671283) and NSFC(11401493).

참고문헌

  1. M. Auslander and M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, RI, 1969. 
  2. S. Bazzoni, M. Cortes-Izurdiaga, and S. Estrada, Periodic modules and acyclic complexes, Algebr. Represent. Theory 23 (2020), no. 5, 1861-1883. https://doi.org/10.1007/s10468-019-09918-z 
  3. D. Bennis, (n, m)-SG rings, Arab. J. Sci. Eng. ASJE. Math. 35 (2010), no. 2D, 169-178.  https://doi.org/10.4064/cm121-1-4
  4. D. Bennis and F. Couchot, On 1-semiregular and 2-semiregular rings, J. Algebra Appl. 20 (2021), no. 12, Paper No. 2150221, 21 pp. https://doi.org/10.1142/S0219498821502212 
  5. D. Bennis, K. Hu, and F. Wang, On 2-SG-semisimple rings, Rocky Mountain J. Math. 45 (2015), no. 4, 1093-1100. https://doi.org/10.1216/RMJ-2015-45-4-1093 
  6. D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra 210 (2007), no. 2, 437-445. https://doi.org/10.1016/j.jpaa.2006.10.010 
  7. D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl. 8 (2009), no. 2, 219-227. https://doi.org/10.1142/S021949880900328X 
  8. D. Bennis and N. Mahdou, First, second, and third change of rings theorems for Gorenstein homological dimensions, Comm. Algebra 38 (2010), no. 10, 3837-3850. https://doi.org/10.1080/00927870903286868 
  9. D. Bennis, N. Mahdou, and K. Ouarghi, Rings over which all modules are strongly Gorenstein projective, Rocky Mountain J. Math. 40 (2010), no. 3, 749-759. https://doi.org/10.1216/RMJ-2010-40-3-749 
  10. D. Chen, F. Wang, H. Jian, and M. Chen, Structure of modules over 2-strongly Gorenstein semisimple ring with its application, J. Shandong Univ. Nat. Sci. 53 (2018) no. 4, 24-30. 
  11. E. E. Enochs and Z. Huang, Canonical filtrations of Gorenstein injective modules, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2415-2421. https://doi.org/10.1090/S0002-9939-2010-10686-X 
  12. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. https://doi.org/10.1515/9783110803662 
  13. Z. Gao, Weak Gorenstein projective, injective and flat modules, J. Algebra Appl. 12 (2013), no. 2, 1250165, 15 pp. https://doi.org/10.1142/S0219498812501654 
  14. H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007 
  15. K. Hu, H. Kim, F. Wang, L. Xu, and D. Zhou, On strongly Gorenstein hereditary rings, Bull. Korean Math. Soc. 56 (2019), no. 2, 373-382. https://doi.org/10.4134/BKMS.b180249 
  16. K. Hu, J. W. Lim, and D. C. Zhou, Some change of rings results on (n, m)-SG modules and (n, m)-SG rings, Comm. Algebra 48 (2020), no. 9, 4037-4050. https://doi.org/10.1080/00927872.2020.1754843 
  17. K. Hu and F. Wang, Some results on Gorenstein Dedekind domains and their factor rings, Comm. Algebra 41 (2013), no. 1, 284-293. https://doi.org/10.1080/00927872.2011.629268 
  18. K. Hu, F. Wang, L. Xu, and D. Zhou, Quasi-strongly Gorenstein projective modules, J. Algebra Appl. 18 (2019), no. 10, 1950182, 13 pp. https://doi.org/10.1142/S0219498819501822 
  19. A. Iacob, Gorenstein Homological Algebra, CRC Press, Boca Raton, FL, 2019. 
  20. N. Mahdou and M. Tamekkante, On (strongly) Gorenstein (semi) hereditary rings, Arab. J. Sci. Eng. 36 (2011), no. 3, 431-440. https://doi.org/10.1007/s13369-011-0047-7