참고문헌
- Akbas. B., O'Rourke, M., Uckan, E., Shen, J. and Caglar, M. (2015), "Performance-based design of buried steel pipes at fault crossings", Proceedings of the ASME 2015 Press. and Vessels & Piping Conf, Boston, Massachusetts, USA, July.
- Anastasopoulos, I., Gazetas, G., M, Bransby M.F., Davies M.C.R. and El Nahas, A. (2007), "Fault rupture propagation through sand: finite element analysis and validation through centrifuge experiments", J Geotech Geo-environ Eng. ASCE, 133(8), 943-58. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(943).
- ANSI/API Spec 5L, Specification for line pipe (2007), 44th ed. American Petroleum Institute, USA.
- ANSI/ASME B31.8 (2007), American Society of Mech Eng. Gas transmission and distribution piping systems.
- Banushi, G., Squeglia, N. and Thiele, K. (2018), "Innovative analysis of a buried operating pipeline subjected to strike-slip fault movement", Soil Dyn. Earthq. Eng., 107, 234-249. https://doi.org/10.1016/j.soildyn.2018.01.015.
- CSA-Z662 (2007), Canadian Standard Association, Oil and gas pipeline systems, Mississauga, Ontario, Canada.
- Cundall, P.A. (2008), FLAC3D Manual: a Computer Program for Fast Lagrangian Analysis of Continua (Version 4.0), Minneapolis Uni., MN, USA.
- Chaudhari, V., Kumar, V.D.K. and Kumar, R.P. (2013), "Finite element analysis of buried continuous pipeline subjected to fault motion", Int. J. Struct. Eng., 4(4), 314-331. https://doi.org/10.1504/IJSTRUCTE.2013.056981
- Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element AnalysiS (3rd Ed., John Wiley & Sons, Inc., NY, USA.
- Desmod, T.P., Power, M.S., Taylor, C.L. and Lau, R.W. (1995), "Behavior of large-diameter pipeline at fault crossings", Proceedings of the 4. U.S. Conference on Lifeline Earthquake Engineering, San Francisco, CA, USA, Aug.
- Dey, S., Chakraborty, S. and Tesfamariam, S. (2020), "Structural performance of buried pipeline undergoing strike-slip fault rupture in 3D using a non-linear sand model", Soil Dyn. Earthq. Eng., 135, 106180. https://doi.org/10.1016/j.soildyn.2020.106180.
- Erenson, C. and Terzi, N.U. (2022), "The effects of half-section waste tire reinforcement on pipe deformation behavior", Geomech. Eng., 30(6), 517-524. https://doi.org/10.12989/gae.2022.30.6.517.
- EN 1998-4 (2006) Design of structures for earthquake resistance-Part 4: Silos, tanks and pipelines, Eurocode 8 (2003), European Committee for Standardization (CEN), Eur Comm Norm Brussels.
- Gresnigt, A.M. and Karamanos, S.A. (2009), "Local buckling strength and deformation capacity of pipes", Proceedings of the 19th International Offshore and Polar Engineering Conference, Osaka, Japan, Jully.
- Hashash, Y.M.A., Hook J.J., Schmidt, B. and I-Chiang Yao, J. (2001), "Seismic design and analysis of underground structures", Tunn. Undergr. Sp. Tech., 16, 247-293. https://doi.org/10.1016/S0886-7798(01)00051-7.
- Joshi, S., Prashant, A., Deb, A. and Jain, S.K. (2011), "Analysis of buried pipelines subjected to reverse fault motion", Soil Dyn. Earthq. Eng., 31(7), 930-940. https://doi.org/10.1016/j.soildyn.2011.02.003.
- Karamitros, D.K., Bouckovalas, G.D. and Kouretzis, G.P. (2007), "Stress analysis of buried steel pipelines at strike-slip fault crossings", Soil Dyn. Earthq. Eng., 27(3), 200-211. https://doi.org/10.1016/j.soildyn.2006.08.001.
- Karamanos, S.A., Sarvanis, G.C., Keil, B.D. and Card, R.J. (2014), "Analysis and design of buried steel water pipelines in seismic areas", J. Pipeline Sys. Eng. Pract., 8(4), 04017018. https://doi.org/10.1061/(asce)ps.1949-1204.0000280.
- Karamitros, D.K., Bouckovalas, G.D., Kouretzis, G.P. and Gkesouli, V. (2011), "An analytical method for strength verification of buried steel pipelines at normal fault crossings", Soil Dyn. Earthq. Eng., 31(11), 1452-1464. https://doi.org/10.1016/j.soildyn.2011.05.012.
- Kaya, E.S., Uckan, E., Cakir, F. and Akbas, B. (2015), "A 3D nonlinear numerical analysis of buried steel pipes at strike-slip fault crossings", Gradevinar, 6(8), 815-823. https://doi.org/10.14256/JCE.1317.2015.
- Kennedy, R.P., Chow, A.W. and Williamson, R.A. (1977), "Fault movement effects on buried oil pipeline", J. Transport. Eng. ASCE, 103, 617-633. https://doi.org/10.1061/TPEJAN.0000659.
- Khoshghalb, A., Shafee, A. Tootoonchi, A., Ghaffaripour O. and Jazaeri S.A. (2020). "Application of the smoothed point interpolation methods in computational geomechanics: A comparative study", Comput. Geotech., 126, 103714. https://doi.org/10.1016/j.compgeo.2020.103714.
- Kokavessis, N.K. and Anagnostidis, G.S. (2006), "Finite element modelling of buried pipelines subjected to seismic loads: soil structure interaction using contact elements", Proceedings of the ASME PVP Conf, Vancouver, BC, Canada, January.
- Liu, A., Hu, Y., Zhao, F., Li, X., Takada, S. and Zhao, L. (2004), "An equivalent-boundary method for the shell analysis of buried pipelines under fault movement", Acta Seismologica Sinica, 17(1), 150-156. https://doi.org/10.1007/s11589-004-0078-1.
- Liu, M., Wang, Y.Y. and Yu, Z. (2008), "Response of pipelines under fault crossing", Proceedings of the 18. International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, Jully.
- MaCaffrey, M.A. and O'Rourke T.D. (1983), "Buried pipeline response to reverse faulting during the 1971 San Fernando Earthquake", Proceedings of the ASME, PVP Conference, USA.
- Melissianos, V.E. and Gantes, C.J. (2017), "Numerical modeling aspects of buried pipeline-fault crossing", Comput. Method. Earthq. Eng., 3, 1-26. https://doi.org/10.1007/978-3-319-47798-5_1.
- Melissianos, V.E., Vamvatsikos, D. and Gantes, C. (2020), "Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture", Soil Dyn. Earthq. Eng., 135, 101-116. https://doi.org/10.1016/j.soildyn.2020.106116.
- Mohitpour, M., Golshan, H. and Murray. A. (2007), Pipeline Design & Construction: a Practical Approach, (3rd Ed.), ASME Press, New York, NY, USA.
- Morshed, A., Roy, K. and Hawlader, B. (2020), "Modeling of buried pipelines in dense sand for oblique movement in vertical - lateral plane", J. Pipeline Sys. Eng. Pract., 11(4), 04020050. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000499.
- NEN 3650 (2006), part-1: general, and part-2, Nederlands Normalisatie-Instituut. Requirements for pipelines systems steel pipelines, Nederlands.
- Newmark, N.M. and Hall, W.J. (1979), "Pipeline design to resist large fault displacement", Proceedings of the 1 st National Commission on Excellence in Education, DC, USA.
- O'Rourke, M.J. (2009), "Wave propagation damage to continuous pipe", Proceedings of the Tech. Counc. Lifeline Earthq. Eng. Conf. (TCLEE), Oakland, CA, USA, June-July. https://doi.org/10.1061/41050(357)76.
- O'Rourke, T.D., Roth, B., Miura, F. and Hamada, M. (1990), "Case history of high-pressure pipeline response to liquefaction-Induced ground movements", Proceedings of the 4th U.S. Natl. Conf. Earthq. Eng., Palm Springs, CA, USA, May.
- O'Rourke, M.J. and Liu, X. (1999), Response of Buried Pipelines Subject to Earthquake Effects, Monograph series, Multidisciplinary center for earthquake engineering research, University of Buffalo, USA.
- Ozcebe, A.G., Paolucci, R., Mariani, S. and Santoro, D. (2015), "A numerical study of the pressurized gas pipeline-normal fault interaction problem", Proceedings of the 6th Int Conf on Earthq Geotech Eng, Christchurch, New Zealand, November.
- Rahman, M.A. and Taniyama, H. (2015), "Analysis of a buried pipeline subjected to fault displacement: A DEM and FEM study", Soil Dyn. Earthq. Eng., 71, 49-62. https://doi.org/10.1016/j.soildyn.2015.01.011.
- Roudsari, M.T., Hosseini, M., Ashrafy. M., Azin, M., Nasimi, M., Torkaman, M. and Khorsandi, A. (2019), "New method to evaluate the buried pipeline-sandy soil interaction subjected to strike slip faulting", J. Earthq. Eng., 26(1), 89-112. https://doi.org/10.1080/13632469.2019.1662343.
- Salehi Dezfooli, M., Khoshghalb A. and Shafee, A. (2022). "An automatic adaptive edge-based smoothed point interpolation method for coupled flow-deformation analysis of saturated porous media", Comput. Geotech., 145, 104672. https://doi.org/10.1016/j.compgeo.2022.104672.
- Sarvanis, G.C. and Karamanos, S.A. (2017), "Analytical model for the strain analysis of continuous buried pipelines in geohazard areas", Eng. Struct,. 152, 57-69. https://doi.org/10.1016/j.engstruct.2017.08.060.
- Shafee, A. and Khoshghalb A. (2021), "An improved node-based smoothed point interpolation method for coupled hydromechanical problems in geomechanics", Comput. Geotech., 139, 104415. https://doi.org/10.1016/j.compgeo.2021.104415.
- Shafee, A. and A. Khoshghalb (2022). "Particle node-based smoothed point interpolation method with stress regularisation for large deformation problems in geomechanics", Comput. Geotech., 141, 104494. https://doi.org/10.1016/j.compgeo.2021.104494.
- Shi, J., Wang, J., Ji, X., Liu, H. and Lu, H. (2022), "Three-dimensional numerical parametric study of tunneling effects on existing pipelines", Geomech. Eng., 30(4), 383-392. https://doi.org/10.12989/gae.2022.30.4.383.
- Shokouhi, S.K.S., Dolatshah, A. and Ghobakhloo, E. (2013), "Seismic strain analysis of buried pipelines in a fault zone using hybrid FEM-ANN approach", Earthq. Struct., 5(4), 417-438. https://doi.org/10.12989/eas.2013.5.4.417.
- Talebi, F. and Kiyono, J. (2021), "A refined nonlinear analytical method for buried pipelines crossing strike-slip faults", Earthq. Eng. Struct. D., 50, 2915-2938. https://doi.org/10.1002/eqe.3479.
- Takada, S., Liang, J. and Li, T. (1998), "Shell-mode response of buried pipelines to large fault movements", Struct Eng. JSCE, 44(A), 1637-1646.
- Tohidi, R.Z. and Shakib, H. (2003), "Response of steel buried pipeline to the three-dimensional fault movements", J Sci. Technol., 14 (56), 1127-1135.
- Toprak, S., Cetin, O.A., Nacaroglu, E. and Koc, A.C. (2010), "Pipeline performance under longitudinal permanent ground deformation", Proceedings of the 14th ECEE, Ohrid, Macedonia, March.
- Trifonov, O.V. (2015), "Numerical stress-strain analysis of buried steel pipelines crossing active strike-slip faults with an emphasis on fault modeling aspects", J. Pipeline Sys. Eng. Pract., 6(1), 1-10. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000177.
- Trifonov, O.V. and Cherniy, V.P. (2010), "A semi-analytical approach to a nonlinear stress-strain analysis of buried steel pipelines crossing active faults", Soil Dyn. Earthq. Eng., 30(11), 1298-1308. https://doi.org/10.1016/j.soildyn.2010.06.002.
- Trifonov, O.V. and Cherniy, V.P. (2012), "Elastoplastic stress-strain analysis of buried steel pipelines subjected to fault displacements with account for service loads", Soil Dyn. Earthq. Eng., 33, 54-62. https://doi.org/10.1016/j.soildyn.2011.10.001.
- Vazouras, P., Dakoulas, P. and Karamanos, S.A. (2015), "Pipe-soil interaction and pipeline performance under strike-slip fault movements", Soil Dyn. Earthq. Eng., 72, 48-65. https://doi.org/10.1016/j.soildyn.2015.01.014.
- Vazouras, P. and Karamanos, S.A. (2017), "Structural behavior of buried pipe bends and their effect on pipeline response in fault crossing areas", Bull. Earthq. Eng., 15, 4999-5024. https://doi.org/10.1007/s10518-017-0148-0.
- Vazouras. P., Karamanos, S.A. and Dakoulas, P. (2010), "Finite element analysis of buried steel pipelines under strike-slip fault displacements", Soil Dyn. Earthq. Eng., 30(11), 1361-1376. https://doi.org/10.1016/j.soildyn.2010.06.011.
- Vazouras, P., Karamanos, S.A. and Dakoulas, P. (2012), "Mechanical behavior of buried steel pipes crossing active strike-slip faults", Soil Dyn. Earthq. Eng., 41(11), 164-180. https://doi.org/10.1016/j.soildyn.2012.05.012.
- Wang, L.R.L. and Yeh, Y.A. (1985), "A refined seismic analysis and design of buried pipeline for fault movement", Earthq. Eng. Struct. D., 13, 75-96. https://doi.org/10.1002/eqe.4290130109.
- Xu, J. and She, G. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Yigit, A. (2022), "Response of segmented pipelines subject to earthquake effects", Geomech. Eng., 30(4), 353-362. https://doi.org/10.12989/gae.2022.30.4.353.