DOI QR코드

DOI QR Code

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber (Department of Civil Engineering, Beirut Arab University) ;
  • Reda Mezeh (Univ. Lille, IMT Lille Douai, Univ. Artois) ;
  • Zeinab Zein (Department of Civil Engineering, Beirut Arab University) ;
  • Marc Azab (College of Engineering and Technology, American University of the Middle East) ;
  • Marwan Sadek (Univ. Lille, IMT Lille Douai, Univ. Artois)
  • Received : 2022.03.04
  • Accepted : 2023.07.17
  • Published : 2023.08.25

Abstract

Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.

Keywords

References

  1. Abghari, A. and Chai, J.W. (1995), "Modeling of soil-pile-superstructure interaction for bridge foundations", Performance of Deep Foundations under Seismic Loading, ASCE, California, USA, October.
  2. Alsaleh, H. and Shahrour, I. (2009), "Influence of plasticity on the seismic soil-micropiles-structure interaction", Soil Dyn. Earthq. Eng., 29(3), 574-578. https://doi.org/10.1016/j.soildyn.2008.04.008.
  3. Azizkandi, A.S., Baziar, M.H. and Sabbaghi, M. (2021), "Centrifuge modeling of batter pile behavior under explosion loading", Mar. Georesour. Geotec.., 39(11), 1273-1284. https://doi.org/10.1080/1064119X.2020.1825570.
  4. Carbonari, S., Morici, M., Dezi, F., Gara, F. and Leoni, G. (2017), "Soil-structure interaction effects in single bridge piers founded on inclined pile groups", Soil Dyn. Earthq. Eng., 92, 52-67. https://doi.org/10.1016/j.soildyn.2016.10.005.
  5. Escoffier, S. (2012), "Experimental study of the effect of inclined pile on the seismic behavior of pile group", Soil Dyn. Earthq. Eng., 42, 275-291. https://doi.org/10.1016/j.soildyn.2012.06.007.
  6. Gazetas, G. and Mylonakis, G. (1998), "Seismic soil-structure interaction: new evidence and emerging issues", Geotechnical special publication, 75, 1119-1174..
  7. Gerolymos, N., Giannakou, A., Anastasopoulos, I. and Gazetas, G. (2008), "Evidence of beneficial role of inclined piles: observations and summary of numerical analyses", Bull. Earthq. Eng., 6(4), 705-722. https://doi.org/10.1007/s10518-008-9085-2.
  8. Ghorbani, A., Hasanzadehshooiili, H., Ghamari, E. and Medzvieckas, J. (2014), "Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil-micropile-superstructure interaction", Soil Dyn. Earthq. Eng., 58, 21-36. https://doi.org/10.1016/j.soildyn.2013.12.001.
  9. Ghorbani, A., Jahanpour, R. and Hasanzadehshooiili, H. (2020), "Evaluation of liquefaction potential of marine sandy soil with piles considering nonlinear seismic soil-pile interaction; A simple predictive model", Mar. Georesour. Geotec., 38(1), 1-22. https://doi.org/10.1080/1064119X.2018.1550543.
  10. Giannakou, A., Gerolymos, N., Gazetas, G., Tazoh, T. and Anastasopoulos, I. (2010), "Seismic behavior of batter piles: Elastic response", J. Geotech. Geoenviron. Eng., 136(9), 1187-1199. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000337.
  11. Gonzalez, F., Carbonari, S., Padron, L.A., Morici, M., Aznarez, J.J., Dezi, F., Maeso, O. and Leoni, G. (2020), "Benefits of inclined pile foundations in earthquake resistant design of bridges", Eng. Struct., 203, 109873. https://doi.org/10.1016/j.engstruct.2019.109873.
  12. Haigh, S.K. and Madabhushi, S.P.G. (2011), "Centrifuge modelling of pile-soil interaction in liquefiable slopes", Geomech. Eng., 3(1), 1-16. https://doi.org/10.12989/gae.2011.3.1.001.
  13. Harn, R.E. (2004), "Have batter piles gotten a bad rap in seismic zones? (Or everything you wanted to know about batter piles but were afraid to Ask)", Ports 2004: Port Development in the Changing World, Houston, USA, May.
  14. Homaei, F. and Yazdani, M. (2020), "The probabilistic seismic assessment of aged concrete arch bridges: The role of soil-structure interaction", Structures, 28, 894-904. https://doi.org/10.1016/j.istruc.2020.09.038.
  15. Jaber, L., Temsah, Y., Chehade, F.H. and Mossallamy, Y.E. (2018), "Effect of soil - structure interaction constitutive models on dynamic response of multi - story buildings", J. Eng. Sci. Tech. Review, 11(3), 56-60. https://doi.org/10.25103/jestr.113.08.
  16. Jardine, R.J. (1991), "Some practical applications of a non-linear ground model", Proc. XECSMFE, Florence, 1, 223-228.
  17. Li, P., Liu, S., Lu, Z. and Yang, J. (2017), "Numerical analysis of a shaking table test on dynamic structure-soil-structure interaction under earthquake excitations", Struct. Des. Tall Spec., 26(15), e1382. https://doi.org/10.1002/tal.1382.
  18. Li, P., Yang, J. and Lu, Z. (2018), "Shaking table test and theoretical analysis of the pile-soil-structure interaction at a liquefiable site", Struct. Des. Tall Spec., 27(15), e1513. https://doi.org/10.1002/tal.1513.
  19. Li, Z., Escoffier, S. and Kotronis, P. (2016), "Centrifuge modeling of batter pile foundations under sinusoidal dynamic excitation", Bull. Earthq. Eng., 14(3), 673-697. https://doi.org/10.1007/s10518-015-9859-2.
  20. Liu, S., Li, P., Zhang, W. and Lu, Z. (2020), "Experimental study and numerical simulation on dynamic soil-structure interaction under earthquake excitations", Soil Dyn. Earthq. Eng., 138, 106333. https://doi.org/10.1016/j.soildyn.2020.106333.
  21. Maheshwari, B.K. and Sarkar, R. (2011), "Seismic behavior of soil-pile-structure interaction in liquefiable soils: Parametric study", Int. J. Geomech., 11(4), 335-347. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000087.
  22. Medina, C., Padron, L.A., Aznarez, J.J. and Maeso, O. (2015), "Influence of pile inclination angle on the dynamic properties and seismic response of piled structures", Soil Dyn. Earthq. Eng., 69, 196-206. https://doi.org/10.1016/j.soildyn.2014.10.027.
  23. Mercado, J.A., Arboleda-Monsalve, L.G., Mackie, K. and Terzic, V. (2020), "Evaluation of substructure and direct modeling approaches in the seismic response of tall buildings", Proceedings of the Geo-Congress: Geotechnical Earthquake Engineering and Special Topics, Minnesota, USA, February.
  24. Meyerhof, G.G. and Yalcin, A.S. (1993), "Behaviour of flexible batter piles under inclined loads in layered soil", Can. Geotech. J., 30(2), 247-256. https://doi.org/10.1139/t93-021.
  25. Meyerhof, G.G. and Yalcin, A.S. (1994), "Bearing capacity of flexible batter piles under eccentric and inclined, loads in layered soil", Can. Geotech. J., 31(4), 583-590. https://doi.org/10.1139/t94-068.
  26. Ngo, V.L., Kim, J.M. and Lee, C. (2019), "Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment", Geomech. Eng., 19(5), 407-420. https://doi.org/10.12989/eri.2019.19.5.407.
  27. Okawa, K., Kamei, H., Kimura, M. and Zhang, F. (2002), "Dynamic behavior of a group-pile foundation with inclined piles in loose sand", Physical modelling in geotechnics, Routledge, London, United Kingdom. .
  28. Parish, Y., Sadek, M. and Shahrour, I. (2009), "Numerical analysis of the seismic behaviour of earth dam", Nat. Hazard. Earth Sys., 9(2), 451-458. https://doi.org/10.5194/nhess-9-451-2009.
  29. Poulos, H.G. (2006), "Raked piles-virtues and drawbacks", J. Geotech. Geoenviron. Eng., 132(6), 795-803. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:6(795).
  30. Rahmani, A., Taiebat, M., Liam Finn, W.D. and Ventura, C.E. (2016), "Evaluation of substructuring method for seismic soil-structure interaction analysis of bridges", Soil Dyn. Earthq. Eng., 90, 112-127. https://doi.org/10.1016/j.soildyn.2016.08.013.
  31. Sadek, M. and Shahrour, I. (2004), "Three-dimensional finite element analysis of the seismic behavior of inclined micropiles", Soil Dyn. Earthq. Eng., 24(6), 473-485. https://doi.org/10.1016/j.soildyn.2004.02.002.
  32. Sadek, M., Mroueh, H. and Shahrour, I. (2010), "Influence of nonlinearity on the stress distribution in the soil-application to road engineering problems", J. Transport. Eng., 136(1), 77-83. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000084.
  33. Sadek, M. and Shahrour, I. (2006), "Influence of the head and tip connection on the seismic performance of micropiles", Soil Dyn. Earthq. Eng., 26(5), 461-468. https://doi.org/10.1016/j.soildyn.2005.10.003.
  34. Seed, H.B. and Idriss, I.M. (1969), "Influence of soil conditions on ground motions during earthquakes", J. Soil Mech. Found. Division, 95(1), 99-137. https://doi.org/10.1061/JSFEAQ.0001260.
  35. Yang, J., Li, P. and Lu, Z. (2019), "Large-scale shaking table test on pile-soil-structure interaction on soft soils", Struct. Des. Tall Spec., 28(18), e1679. https://doi.org/10.1002/tal.1679.