DOI QR코드

DOI QR Code

Influence of specimen height on the shear behavior of glass beads in the direct shear test

  • Young-Ho Hong (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yong-Hoon Byun (School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University) ;
  • Jong-Sub Lee (School of Civil, Environmental and Architectural Engineering, Korea University)
  • Received : 2023.04.17
  • Accepted : 2023.07.20
  • Published : 2023.08.25

Abstract

A box scale affects the shear behavior of soils in the direct shear test. The purpose of this study is to investigate the scale effect on the shear behavior of dilative granular materials by testing specimens of different heights placed in a type C shear box. Experimental tests were performed on specimens composed of glass beads with different heights and equal initial void ratios. Results showed that the peak friction and dilation angles linearly increased with the specimen height; however, the residual friction angle remained relatively constant. Similarly, the shear stiffness increased with the specimen height, rapidly reaching its peak state. Height does not have a significant effect on the total volume changes; nevertheless, a high aspect ratio can be assumed to result in global and homogeneous failure. The results and interpretations may be used as reference for recommending shear box scale in direct shear tests.

Keywords

Acknowledgement

This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government (Project Number: 22UGCP-B157945-03).

References

  1. ASTM D3080/D3080M-11. (2011), Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, USA.
  2. Beren, M., Cobanoglu, I., Celik, S.B. and undul, O. (2020), "Shear rate effect on strength characteristics of sandy soils", Soil Mech. Found. Eng., 57, 281-287. https://doi.org/10.1007/s11204-020-09667-y.
  3. Bishop, A.W. (1950), "Discussion on measurement of shear strength of soils", Geotechnique, 2(1), 113-116. https://doi.org/10.1680/geot.1950.2.1.13
  4. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65.
  5. Butler, F.G. (1975), "General report and state-of-the-art review-Session 3", Proceedings of the Conference on Settlement of Structures, Pentech Press, London.
  6. Casagrande, A. (1936), "The determination of the preconsolidation load and its practical significance", Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, June.
  7. Cerato, A.B. and Lutenegger, A.J. (2006), "Specimen size and scale effects of direct shear box tests of sands", Geotech. Test. J., 29(6), 507-516. https://doi.org/10.1520/GTJ100312.
  8. Cerato, A.B., and Lutenegger, A.J. (2007), "Scale effects of shallow foundation bearing capacity on granular material", J. Geotech. Geoenviron. Eng., 133(10), 1192-1202. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1192).
  9. Cole, E.R.L. (1967), "The behaviour of soils in the simple shear apparatus", Ph.D. Dissertation, University of Cambridge, Cambridge.
  10. Davis, E.H. (1968), "Theories of plasticity and failure of soil masses", Soil mechanics: selected topics (Ed., I.K. Lee), 341-354. New York, NY, USA.
  11. Deiminiat, A., Li, L. and Zeng, F. (2022), "Experimental study on the minimum required specimen width to maximum particle size ratio in direct shear tests", Civil Eng., 3(1), 66-84. https://doi.org/10.3390/civileng3010005.
  12. El-Emam, M., Attom, M. and Khan, Z. (2012), "Numerical prediction of plane strain properties of sandy soil from direct shear test", Int. J. Geotech. Eng., 6(1), 79-90. https://doi.org/10.3328/IJGE.2012.06.01.79-90.
  13. Grammatikopoulou, A., Zdravkovic, L. and Potts, D.M. (2008), "The influence of previous stress history and stress path direction on the surface settlement trough induced by tunnelling", Geotechnique, 58(4), 269-281. https://doi.org/10.1680/geot.2008.58.4.269.
  14. Guo, P., and Su, X. (2007), "Shear strength, interparticle locking, and dilatancy of granular materials", Can. Geotech. J., 44(5), 579-591. https://doi.org/10.1139/t07-010.
  15. He, H., Zheng, J. and Schaefer, V.R. (2021), "Simulating shearing behavior of realistic granular soils using physics engine", Granul. Matter., 23, 1-20. https://doi.org/10.1007/s10035-021-01122-5.
  16. Head, K.H. (1980), Permeability, shear strength and compressibility tests, Manual of soil laboratory testing 2, Pentech Press, London, England.
  17. Hewitt, P. (1989), "Settlement of structures on overconsolidated clay", Master of Science Engineering Thesis, University of Sydney, Sydney, Australia.
  18. Hight, D.W. and Leroueil, S. (2003), "Characterisation of soils for engineering purposes", Characterisation and engineering properties of natural soils, 1, 255-360.
  19. Hight, D.W., Gasparre, A., Nishimura, S., Minh, N.A., Jardine, R.J. and Coop, M.R. (2007), "Characteristics of the London Clay from the Terminal 5 site at Heathrow Airport", Geotechnique, 57(1), 3-18. https://doi.org/10.1680/ssc.41080.0016.
  20. Hill, R. (1950), The mathematical theory of plasticity, Oxford University Press, Oxford.
  21. Jacobson, D.E., Valdes, J.R. and Evans, T.M. (2007), "A numerical view into direct shear specimen size effects", Geotech. Test. J., 30(6), 512-516. http://doi.org/10.1520/GTJ100923.
  22. Jewell, R.A. and Wroth, C.P. (1987), "Direct shear tests on reinforced sand", Geotechnique, 37(1), 53-68. https://doi.org/10.1680/geot.1987.37.1.53.
  23. Jewell, R.A. (1989), "Direct shear tests on sand", Geotechnique, 39(2), 309-322. https://doi.org/10.1680/geot.1989.39.2.309.
  24. Kim, B.S., Shibuya, S., Park, S.W. and Kato, S. (2012), "Effect of opening on the shear behavior of granular materials in direct shear test", KSCE J. Civ. Eng., 16, 1132-1142. https://doi.org/10.1007/s12205-012-1518-4.
  25. Kim, B.S. (2021), "Establishing an opening size criterion in direct shear test using DEM Simulation", Geomech. Eng., 26(2), 147-160. https://doi.org/10.12989/gae.2021.26.2.147.
  26. Kogler, D.P. and Scheidig, A. (1938), Baugrund und Bauwerk, Wilhelm Ernst und Sohn, Berlin.
  27. Lings, M.L. and Dietz, M.S. (2004), "An improved direct shear apparatus for sand", Geotechnique, 54(4), 245-256. https://doi.org/10.1680/geot.2004.54.4.245.
  28. Mikasa, M. (1960), "New direct shear test apparatus", Proceedings of the 15th Annual Conference of JSCE, Tokyo.
  29. Nitka, M. and Grabowski, A. (2021), "Shear band evolution phenomena in direct shear test modelled with DEM", Powder Technol., 391, 369-384. https://doi.org/10.1016/j.powtec.2021.06.025.
  30. Palmeira, E.M. and Milligan, G.W.E. (1989), "Scale effects in direct shear tests on sand", Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, August.
  31. Pantelidou, H. and Simpson, B. (2007), "Geotechnical variation of London Clay across central London", Geotechnique, 57(1), 101-112. https://doi.org/10.1680/geot.2007.57.1.101.
  32. Parsons, J.D. (1936), "Progress report on an investigation of the shearing resistance of cohesionless soils", Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, 2, Cambridge, June.
  33. Roscoe, K.H., Schofield, A. and Wroth, A.P. (1958), "On the yielding of soils", Geotechnique, 8(1), 22-53. https://doi.org/10.1680/geot.1958.8.1.22.
  34. Roscoe, K.H. (1967), "Principal axes observed during simple shear of a sand". Proceedings of the Geotechnical Conference on Geotechnical Properties of Natural Soils and Rocks, Norwegian Geotechnical Society, Oslo, Norway.
  35. Rowe, P.W. (1962), "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500-527. https://doi.org/10.1098/rspa.1962.0193.
  36. Rowe, P.W. (1969), "The relation between the shear strength of sands in triaxial compression, plane strain and direct", Geotechnique, 19(1), 75-86. https://doi.org/10.1680/geot.1969.19.1.75.
  37. Saada, A.S., Liang, L., Figueroa, J.L. and Cope, C.T. (1999), "Bifurcation and shear band propagation in sands", Geotechnique, 49(3), 367-385. https://doi.org/10.1680/geot.1999.49.3.367.
  38. Scaringi, G. and Di Maio, C. (2016), "Influence of displacement rate on residual shear strength of clays", Procedia Earth Planet. Sci., 16, 137-145. https://doi.org/10.1016/j.proeps.2016.10.015.
  39. Scarpelli, G. and Wood, D.M. (1982), "Experimental observations of shear patterns in direct shear tests", IUTAM Deformation and Failure of Granular Materials Conference, Delft, August.
  40. Shibuya, S., Mitachi, T. and Tamate, S. (1997), "Interpretation of direct shear box testing of sands as quasi-simple shear", Geotechnique, 47(4), 769-790. https://doi.org/10.1680/geot.1997.47.4.769.
  41. Simoni, A. and Houlsby, G.T. (2006), "The direct shear strength and dilatancy of sand-gravel mixtures", Geotech. Geol. Eng., 24, 523-549. https://doi.org/10.1007/s10706-004-5832-6.
  42. Skempton, A.W. and Bishop, A.W. (1950), "The measurement of the shear strength of soils", Geotechnique, 2(2), 90-108. https://doi.org/10.1680/geot.1950.2.2.90.
  43. Stone, K.J.L. and Wood, D.M. (1992), "Effects of dilatancy and particle size observed in model tests on sand", Soils Found., 32(4), 43-57. https://doi.org/10.3208/sandf1972.32.4_43.
  44. Stroud, M.A. (1971), "The behaviour of sand at low stress levels in the simple-shear apparatus", Ph.D. Dissertation, University of Cambridge, Cambridge.
  45. Takada, N. (1993), "Mikasa's direct shear apparatus, test procedures and results", Geotech. Test. J., 16(3), 314-322. https://doi.org/10.1520/GTJ10052J.
  46. Taylor, D.W. (1948), Fundamentals of soil mechanics, John wiley & Son, New York.
  47. Thornton, C. and Zhang, L. (2003), "Numerical simulations of the direct shear test", Chem. Eng. and Technol., 26(2), 153-156. https://doi.org/10.1002/ceat.200390022.
  48. Tika, T.E., Vaughan, P.R. and Lemos, L.J. (1996), "Fast shearing of pre-existing shear zones in soil", Geotechnique, 46(2), 197-233. https://doi.org/10.1680/geot.1996.46.2.197.
  49. Vermeer, P.A. (1990), "The orientation of shear bands in biaxial tests", Geotechnique, 40(2), 223-236. https://doi.org/10.1680/geot.1990.40.2.223.
  50. Wang, J. and Gutierrez, M. (2010), "Discrete element simulations of direct shear specimen scale effects", Geotechnique, 60(5), 395-409. https://doi.org/10.1680/geot.2010.60.5.395.
  51. Wroth, C.P. (1958), "The behaviour of soils and other granular media when subjected to shear", Ph.D. Dissertation, University of Cambridge, Cambridge.
  52. Wu, P.K., Matsushima, K. and Tatsuoka, F. (2008), "Effects of specimen size and some other factors on the strength and deformation of granular soil in direct shear tests", Geotech. Test. J., 31(1), 45-64. https://doi.org/10.1520/GTJ100773.
  53. Zhang, L. and Thornton, C. (2007), "A numerical examination of the direct shear test", Geotechnique, 57(4), 343-354. https://doi.org/10.1680/geot.2007.57.4.343.
  54. Zhou, Q., Shen, H.H., Helenbrook, B.T. and Zhang, H. (2009), "Scale dependence of direct shear tests", Chin. Sci. Bull., 54, 4337-4348. https://doi.org/10.1007/s11434-009-0516-5.