Acknowledgement
This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government (Project Number: 22UGCP-B157945-03).
References
- ASTM D3080/D3080M-11. (2011), Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, USA.
- Beren, M., Cobanoglu, I., Celik, S.B. and undul, O. (2020), "Shear rate effect on strength characteristics of sandy soils", Soil Mech. Found. Eng., 57, 281-287. https://doi.org/10.1007/s11204-020-09667-y.
- Bishop, A.W. (1950), "Discussion on measurement of shear strength of soils", Geotechnique, 2(1), 113-116. https://doi.org/10.1680/geot.1950.2.1.13
- Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65.
- Butler, F.G. (1975), "General report and state-of-the-art review-Session 3", Proceedings of the Conference on Settlement of Structures, Pentech Press, London.
- Casagrande, A. (1936), "The determination of the preconsolidation load and its practical significance", Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, June.
- Cerato, A.B. and Lutenegger, A.J. (2006), "Specimen size and scale effects of direct shear box tests of sands", Geotech. Test. J., 29(6), 507-516. https://doi.org/10.1520/GTJ100312.
- Cerato, A.B., and Lutenegger, A.J. (2007), "Scale effects of shallow foundation bearing capacity on granular material", J. Geotech. Geoenviron. Eng., 133(10), 1192-1202. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1192).
- Cole, E.R.L. (1967), "The behaviour of soils in the simple shear apparatus", Ph.D. Dissertation, University of Cambridge, Cambridge.
- Davis, E.H. (1968), "Theories of plasticity and failure of soil masses", Soil mechanics: selected topics (Ed., I.K. Lee), 341-354. New York, NY, USA.
- Deiminiat, A., Li, L. and Zeng, F. (2022), "Experimental study on the minimum required specimen width to maximum particle size ratio in direct shear tests", Civil Eng., 3(1), 66-84. https://doi.org/10.3390/civileng3010005.
- El-Emam, M., Attom, M. and Khan, Z. (2012), "Numerical prediction of plane strain properties of sandy soil from direct shear test", Int. J. Geotech. Eng., 6(1), 79-90. https://doi.org/10.3328/IJGE.2012.06.01.79-90.
- Grammatikopoulou, A., Zdravkovic, L. and Potts, D.M. (2008), "The influence of previous stress history and stress path direction on the surface settlement trough induced by tunnelling", Geotechnique, 58(4), 269-281. https://doi.org/10.1680/geot.2008.58.4.269.
- Guo, P., and Su, X. (2007), "Shear strength, interparticle locking, and dilatancy of granular materials", Can. Geotech. J., 44(5), 579-591. https://doi.org/10.1139/t07-010.
- He, H., Zheng, J. and Schaefer, V.R. (2021), "Simulating shearing behavior of realistic granular soils using physics engine", Granul. Matter., 23, 1-20. https://doi.org/10.1007/s10035-021-01122-5.
- Head, K.H. (1980), Permeability, shear strength and compressibility tests, Manual of soil laboratory testing 2, Pentech Press, London, England.
- Hewitt, P. (1989), "Settlement of structures on overconsolidated clay", Master of Science Engineering Thesis, University of Sydney, Sydney, Australia.
- Hight, D.W. and Leroueil, S. (2003), "Characterisation of soils for engineering purposes", Characterisation and engineering properties of natural soils, 1, 255-360.
- Hight, D.W., Gasparre, A., Nishimura, S., Minh, N.A., Jardine, R.J. and Coop, M.R. (2007), "Characteristics of the London Clay from the Terminal 5 site at Heathrow Airport", Geotechnique, 57(1), 3-18. https://doi.org/10.1680/ssc.41080.0016.
- Hill, R. (1950), The mathematical theory of plasticity, Oxford University Press, Oxford.
- Jacobson, D.E., Valdes, J.R. and Evans, T.M. (2007), "A numerical view into direct shear specimen size effects", Geotech. Test. J., 30(6), 512-516. http://doi.org/10.1520/GTJ100923.
- Jewell, R.A. and Wroth, C.P. (1987), "Direct shear tests on reinforced sand", Geotechnique, 37(1), 53-68. https://doi.org/10.1680/geot.1987.37.1.53.
- Jewell, R.A. (1989), "Direct shear tests on sand", Geotechnique, 39(2), 309-322. https://doi.org/10.1680/geot.1989.39.2.309.
- Kim, B.S., Shibuya, S., Park, S.W. and Kato, S. (2012), "Effect of opening on the shear behavior of granular materials in direct shear test", KSCE J. Civ. Eng., 16, 1132-1142. https://doi.org/10.1007/s12205-012-1518-4.
- Kim, B.S. (2021), "Establishing an opening size criterion in direct shear test using DEM Simulation", Geomech. Eng., 26(2), 147-160. https://doi.org/10.12989/gae.2021.26.2.147.
- Kogler, D.P. and Scheidig, A. (1938), Baugrund und Bauwerk, Wilhelm Ernst und Sohn, Berlin.
- Lings, M.L. and Dietz, M.S. (2004), "An improved direct shear apparatus for sand", Geotechnique, 54(4), 245-256. https://doi.org/10.1680/geot.2004.54.4.245.
- Mikasa, M. (1960), "New direct shear test apparatus", Proceedings of the 15th Annual Conference of JSCE, Tokyo.
- Nitka, M. and Grabowski, A. (2021), "Shear band evolution phenomena in direct shear test modelled with DEM", Powder Technol., 391, 369-384. https://doi.org/10.1016/j.powtec.2021.06.025.
- Palmeira, E.M. and Milligan, G.W.E. (1989), "Scale effects in direct shear tests on sand", Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, August.
- Pantelidou, H. and Simpson, B. (2007), "Geotechnical variation of London Clay across central London", Geotechnique, 57(1), 101-112. https://doi.org/10.1680/geot.2007.57.1.101.
- Parsons, J.D. (1936), "Progress report on an investigation of the shearing resistance of cohesionless soils", Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, 2, Cambridge, June.
- Roscoe, K.H., Schofield, A. and Wroth, A.P. (1958), "On the yielding of soils", Geotechnique, 8(1), 22-53. https://doi.org/10.1680/geot.1958.8.1.22.
- Roscoe, K.H. (1967), "Principal axes observed during simple shear of a sand". Proceedings of the Geotechnical Conference on Geotechnical Properties of Natural Soils and Rocks, Norwegian Geotechnical Society, Oslo, Norway.
- Rowe, P.W. (1962), "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500-527. https://doi.org/10.1098/rspa.1962.0193.
- Rowe, P.W. (1969), "The relation between the shear strength of sands in triaxial compression, plane strain and direct", Geotechnique, 19(1), 75-86. https://doi.org/10.1680/geot.1969.19.1.75.
- Saada, A.S., Liang, L., Figueroa, J.L. and Cope, C.T. (1999), "Bifurcation and shear band propagation in sands", Geotechnique, 49(3), 367-385. https://doi.org/10.1680/geot.1999.49.3.367.
- Scaringi, G. and Di Maio, C. (2016), "Influence of displacement rate on residual shear strength of clays", Procedia Earth Planet. Sci., 16, 137-145. https://doi.org/10.1016/j.proeps.2016.10.015.
- Scarpelli, G. and Wood, D.M. (1982), "Experimental observations of shear patterns in direct shear tests", IUTAM Deformation and Failure of Granular Materials Conference, Delft, August.
- Shibuya, S., Mitachi, T. and Tamate, S. (1997), "Interpretation of direct shear box testing of sands as quasi-simple shear", Geotechnique, 47(4), 769-790. https://doi.org/10.1680/geot.1997.47.4.769.
- Simoni, A. and Houlsby, G.T. (2006), "The direct shear strength and dilatancy of sand-gravel mixtures", Geotech. Geol. Eng., 24, 523-549. https://doi.org/10.1007/s10706-004-5832-6.
- Skempton, A.W. and Bishop, A.W. (1950), "The measurement of the shear strength of soils", Geotechnique, 2(2), 90-108. https://doi.org/10.1680/geot.1950.2.2.90.
- Stone, K.J.L. and Wood, D.M. (1992), "Effects of dilatancy and particle size observed in model tests on sand", Soils Found., 32(4), 43-57. https://doi.org/10.3208/sandf1972.32.4_43.
- Stroud, M.A. (1971), "The behaviour of sand at low stress levels in the simple-shear apparatus", Ph.D. Dissertation, University of Cambridge, Cambridge.
- Takada, N. (1993), "Mikasa's direct shear apparatus, test procedures and results", Geotech. Test. J., 16(3), 314-322. https://doi.org/10.1520/GTJ10052J.
- Taylor, D.W. (1948), Fundamentals of soil mechanics, John wiley & Son, New York.
- Thornton, C. and Zhang, L. (2003), "Numerical simulations of the direct shear test", Chem. Eng. and Technol., 26(2), 153-156. https://doi.org/10.1002/ceat.200390022.
- Tika, T.E., Vaughan, P.R. and Lemos, L.J. (1996), "Fast shearing of pre-existing shear zones in soil", Geotechnique, 46(2), 197-233. https://doi.org/10.1680/geot.1996.46.2.197.
- Vermeer, P.A. (1990), "The orientation of shear bands in biaxial tests", Geotechnique, 40(2), 223-236. https://doi.org/10.1680/geot.1990.40.2.223.
- Wang, J. and Gutierrez, M. (2010), "Discrete element simulations of direct shear specimen scale effects", Geotechnique, 60(5), 395-409. https://doi.org/10.1680/geot.2010.60.5.395.
- Wroth, C.P. (1958), "The behaviour of soils and other granular media when subjected to shear", Ph.D. Dissertation, University of Cambridge, Cambridge.
- Wu, P.K., Matsushima, K. and Tatsuoka, F. (2008), "Effects of specimen size and some other factors on the strength and deformation of granular soil in direct shear tests", Geotech. Test. J., 31(1), 45-64. https://doi.org/10.1520/GTJ100773.
- Zhang, L. and Thornton, C. (2007), "A numerical examination of the direct shear test", Geotechnique, 57(4), 343-354. https://doi.org/10.1680/geot.2007.57.4.343.
- Zhou, Q., Shen, H.H., Helenbrook, B.T. and Zhang, H. (2009), "Scale dependence of direct shear tests", Chin. Sci. Bull., 54, 4337-4348. https://doi.org/10.1007/s11434-009-0516-5.