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THE RIGIDITY OF RECTANGULAR FRAMEWORKS AND

THE LAPLACIAN MATRICES†

KEUNBAE CHOI AND HOSOO LEE∗

Abstract. In general, the rigidity problem of braced rectangular frame-

works is determined by the connectivity of the bipartite graph induced by
given rectangular framework. In this paper, we study how to solve the

rigidity problem of the braced rectangular framework using the Laplacian
matrix of the matrix induced by a braced rectangular framework.
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1. Introduction

Many high-rise buildings are supported by steel frameworks consisting of rect-
angular arrangements of girder beams and welded or riveted joints. However, the
structure is treated as a flat (planar rather than space) structure with pin-joints
rather than rigid welds when joining beams together for various reasons([7], p.
59). Figure 1 shows that the simplest structure, consisting of four beams and
four pin-joints. This structure is unstable because it can be easily deformed
under sufficiently high loads. In order for the structure to be stable, it must be
braced by extra beams.

In the case of a larger structure containing many rectangular cells, the deter-
mination of the rigidity of the structure is not easy. Nevertheless, it is possible
to ensure the rigidity by attaching support rods (extra beams) to all the rectan-
gular cells, but it is too costly. So we have natural mathematical problems; the
rigidity problem and the optimization problem.

It is well known that the rigidity problem of braced rectangular frameworks
can be solved with the connectivity of the bipartite graph (see, [1], [3], [4], [5],
[6], [7]). In fact, Figure 2 shows a rigid braced rectangular framework and its
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Figure 1. Simplest type of rectangular framework([7], p. 60)

connected bipartite graph, and Figure 3 shows a non-rigid braced rectangular
framework and its disconnected bipartite graph.

Figure 2. Rigid rectangular framework and connected bipar-
tite graph

Figure 3. Non-rigid rectangular framework and disconnected
bipartite graph

In this paper, we study how to solve the stability problem using the Laplacian
matrix of the matrix induced by the braced rectangular framework.

2. Laplacian matrix of a matrix

In this section, for convenience, the (i, j)-component of a given matrix M is
expressed as (M)ij . Generally, the Laplacian matrix L is defined from a graph
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G = (V,E). In fact, L = D−A, where A is the weighted adjacency matrix of G
and D is the degree matrix of G, and is the diagonal matrix such that

(D)ii =

|V |∑
j

(A)ij

Now, similar to the definition of the Laplacian matrix of a graph, we can
define the Laplacian matrix of a given real symmetric matrix with non-nagative
entries.

Definition 2.1. Let S be a n × n real symmetric matrix with non-nagative
entries and let D = diag(d1, d2, . . . , dn), where

di =

n∑
j=1

(S)ij

for i = 1, 2, . . . , n. Let’s call the matrix L = D − S the Laplacian of the given
matrix S.

Lemma 2.2. Let S be a n×n real symmetric matrix with non-nagative entries.
Then the Laplacian matrix L = D − S is a positive semi-definite.

Proof. For any x = [x1 x2 · · ·xn ]
T ∈ Rn, since the matrix S is symmetric and

its entries are all non-negative, we have

xTLx = xTDx− xTSx =

n∑
i=1

di x
2
i −

n∑
i,j=1

(S)ij xi xj

=

n∑
i=1

{ n∑
j=1

(S)ij

}
x2
i −

n∑
i=1

(S)iix
2
i −

n∑
i ̸=j

(S)ijxixj

=

n∑
i=1

{ n∑
j=1

(S)ij − (S)ii

}
x2
i −

n∑
i ̸=j

(S)ij xi xj

=
n∑

i̸=j

(S)ij x
2
i −

n∑
i̸=j

(S)ij xi xj

=
1

2

( n∑
i̸=j

(S)ij x
2
i − 2

n∑
i̸=j

(S)ij xi xj +

n∑
i ̸=j

(S)ij x
2
j

)

=
1

2

n∑
i ̸=j

(S)ij(xi − xj)
2 ≥ 0 (1)

This completes the proof. □

Definition 2.3. (cf. [4]) Let M = [c1 c2 · · · cn] be a m× n real matrix, where
cj is a j-th column vector of M for j = 1, 2, . . . , n. And let C = {c1, c2, · · · cn}.
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Then two vectors ck and cl of C are called c–connectable if there is a sequence
cj1 , cj2 , · · · , cjw in C such that

ck · cj1 ̸= 0, cj1 · cj2 ̸= 0, · · · , cjw · cl ̸= 0

Moreover, a subset S of C is said to be c–connected if every pair of S is c–
connectable.

Let M be a m×n real matrix with non-nagative entries, let W = MTM, and

let D = diag(d1, d2, . . . , dn), where di =
n∑

j=1

(W )ij for i = 1, 2, . . . , n.

Theorem 2.4. We have the followings

(1) (W )ij = ci ·cj for 1 ≤ i, j ≤ n, where ci and cj are i-th and j-th column
vectors of M, respectively.

(2) The Laplacian matrix L = D −W of W is a positive semi-definite.
(3) λ = 0 is eigenvalue of L.

Proof. (1) Obvious.
(2) By Lemma 2.2.
(3) For convenience, let wij = (W )ij . Then

L =



(
n∑

j=1

w1j − w11

)
−w12 · · · −w1n

−w21

(
n∑

j=1

w2j − w22

)
· · · −w2n

...
...

. . .
...

−wn1 −wn2 · · ·
(

n∑
j=1

wnj − wnn

)


Thus Lx = 0, where x = [1 1 · · · 1]T . Hence 0 is the eigenvalue of L correspond-
ing to the eigenvector x. □

Lemma 2.5. Let M = [c1 c2 · · · cn] be a m×n real matrix, where cj is a column
vector of M for j = 1, 2, . . . , n. Then we have the followings;

(1) The Laplacian matrix L of W = MTM is decomposed of the form

L =
1

2

∑
i,j

(W )ijLij =
∑
i<j

(W )ijLij ,

where

Lij = Lji =



...
...

...
...

...
· · · 1 · · · −1 · · ·
...

...
...

...
...

· · · −1 · · · 1 · · ·
...

...
...

...
...


ith

jth

ith jth



The rigidity of rectangular frameworks and the Laplacian matrices 259

Here, all dotted entries of Lij are zero and Lii is the n× n zero matrix.
(2) If F is a c–connected component in the set of all column vectors of

M and I is the index set of the elements in F, then Lx = 0, where
x = [x1 x2 · · · xn]

T and

xw =

{
1, w ∈ I
0, otherwise

Proof. (1) Notice that W is a symmetric matrix and that Lij = Lji for i, j(1 ≤
i, j ≤ n). For convenience, we let (W )ij = wij for i, j(1 ≤ i, j ≤ n).

∑
i,j

(W )ijLij =

 w12 −w12 0
−w21 w21 0
0 0 0

+


w13 0 −w13 0
0 0 0 0

−w31 0 w31 0
0 0 0 0


+ · · ·+

 w1n 0 −w1n

0 0 0
−wn1 0 wn1



+

 w12 −w12 0
−w21 w21 0
0 0 0

+


0 0 0 0
0 w23 −w23 0
0 −w32 w32 0
0 0 0 0



+ · · ·+


0 0 0 0
0 w2n 0 −w2n

0 0 0 0
0 −wn2 0 wn2



+

 w1n 0 −w1n

0 0 0
−wn1 0 wn1

+


0 0 0 0
0 w2n 0 −w2n

0 0 0 0
0 −wn2 0 wn2


+ · · ·+

 0 0 0
0 wn−1n −wn−1n

0 −wnn−1 wnn−1


= 2L

(2) For i, j ∈ I, if ci · cj = 0, then (W )ij = 0. If ci · cj ̸= 0, then Lijx = 0.
Thus (W )ijLijx = 0. Notice that if i, j /∈ I, Lijx = 0. Threrefore by (1), we
have Lx = 0. □

Theorem 2.6. Let M be a m × n real matrix with non-nagative entries, and
let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the Laplacian matrix L of M.
Then λ2 > 0 if and olny if the set of all column vectors of M is c–connected.

Proof. Let C = {c1, c2, · · · cn} be the set of all column vectors of M. Sup-
pose that the C is not c–connected. We construct the column vector x =
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[x1 x2 · · ·xn]
T ∈ Rn as follows: for fixed c–connected component F,

xi =

{
1, ci ∈ F
0, otherwise

Then Lx = 0 by (1) of Lemma 2.5. We note that the two eigenvectors x1 =
[1 1 · · · 1]T and x corresponding to the eigenvalue λ = 0 are linearly independent.
Thus the dimension of the eigenspace corresponding to the eigenvalue λ = 0 is
greater than equal to 2. So, we have λ2 = 0.

Conversely, suppose that C is c–connected. Assume Lx = 0. That is to say,
x = [x1 x2 · · ·xn]

T ∈ Rn is a eigenvector corresponding to the eigenvalue λ = 0.
Then by the equation (1) in Lemma 2.2,

xTLx =
∑
i ̸=j

(W )ij(xi − xj)
2 = 0.

In the case of (W )ij = ci ·cj ̸= 0, we have xi = xj . If (W )ij = ci ·cj = 0, then
since for any two column vectors of C is c–connected, there exists a sequence
cc1 , cc2 , · · · , cck such that

ci · cc1 ̸= 0, cc1 · cc2 ̸= 0, · · · , cck · cj ̸= 0

Thus we have xi = xc1 = · · · = xck = xj , and hence xi = xj . If xi = 0 for some
i (1 ≤ i ≤ n), then xi = 0 for all i (1 ≤ i ≤ n), i.e., x is a zero vector that is
contradicts to x ̸= 0. Thus we have x = k [1 1 · · · 1]T (k ̸= 0). It follows that
the dimension of the eigenspace corresponding to the eigenvalue λ = 0 is 1, and
hence λ2 > 0. □

3. Rigidity of rectangular frameworks

Definition 3.1. Let C be a finite set, and F a non-empty family of subsets of
C, that is F ⊆ 2C . The ordered pair (C,F ) is said to be a matroid if

(M1) If B ∈ F and A ⊆ B, then A ∈ F.
(M2) If A,B ∈ F and |A| < |B|, then there exists c in B \A such that A∪{c}

in F.

Theorem 3.2. Let M be a m× n real matrix, let C be a set of column vectors
of M , and let and

F = {S : S ⊆ C, S is c–connected}
Then (C,F ) is a matroid if and only if C is c–connected or all one-point subsets
of C are c–connected components.

Proof. Suppose that (C,F ) is a matroid and assume that C is not c–connected
and also there is c–connected component that is not one-point subset of C, say,
A. For convenience, let {a} be a proper subset of A. Let B be a c–connected
component in C differ from A of C. Then A,B ∈ F and A ∩B = ∅.

Case 1: |A| < |B|, for any b ∈ B, A ∪ {b} is not c–connected, and hence
A ∪ {b} /∈ F. This is a contradiction to the fact (C,F ) is a matroid.
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Case 2: |A| > |B|, we can easily deduce a contradiction using the similar
method as in the case 1.

Case 3: |A| = |B|, by (M1), {a} ∈ F, |{a}| < |A| = |B|, and for any b ∈ B,
{a} ∪ {b} /∈ F. This is a contradiction to the fact (C,F ) is a matroid.

Conversely, if C is a union of trivial c–connected components, then

F = {{c} : c ∈ C} ∪ ∅.

Clearly, F satisfies (M1) and (M2), so that (C,F ) is a matroid. If C is c–
connected, then F = 2C , and hence F satisfies (M1) and (M2), so that (C,F ) is
a matroid.

□

Remark 3.1. Let M be a m × n real matrix, let C0 be the set of all column
vectors of M, and let F = {S : S ⊆ C0, S is c-connected}. Then if C0 is a
c–connected component in C, then (C0, F ) is a matroid.

Let R be a m× n rectangular framework. Define the matrix MR = [aij ]m×n

of R by

aij =

{
1, (i, j)–entry has extra-beam in R
0, otherwise.

For example,

R = ⇐⇒ MR =


1 0 0
1 1 0
0 1 0
0 0 1


Theorem 3.3. Let R be a m × n rectangular framework and let LR be the
Laplacian Matrix of the matrix MR. Then R is a rigid rectangular framework if
and only if

(1) The eigenvalue λ2 of the matrix LR is positive and
(2) There are no zero row vectors in MR.

Proof. Suppose that R is a rigid rectangular framework. Then the bipartite
graph corresponding to R is connected. Clearly, (2) is satisfied and the column
space of MR is c–connected. By Theorem 2.6, (1) is satisfied.

Conversely, if (1) are (2) are satisfied, then we can easily show that the bi-
partite graph corresponding to R is connected by Theorem 2.6 and (2). Thus R
is a rigid rectangular framework. □

Remark 3.2. Let R be a braced rectangular framework. Figure 4 says that the
fundamental relationship of bipartite graph, matrix, and the Laplacian matrix
of R.
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Figure 4. Bipartite graph, matrix, and the Laplacian matrix

Remark 3.3. For an example of python coding using the Laplacian matrix of
the matrix induced by given rectangular framework, which can determine the
stability of rectangular framework, see Appendix.
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Appendix: python code

import numpy as np

from sympy import Matrix

from sympy import Symbol

def Rect_Fra(*args):

M = []

for i in args:

if sum(i) != 1 or len(i) == 1:

M.append(i)

if len(M) == 0:

print(’The rectangular framework is NOT rigid’)

else:

Mt = list(map(list,zip(*M)))

W = np.dot(Mt, M)

if np.trace(W) < len(M) + len(Mt) -1:

print(’The rectangular framework is NOT rigid’)

else:

S = []

for i in W:

S.append(sum(i))

D = np.diag(S)

L = D - W

x = Symbol(’lambda’)

if Matrix(L).charpoly() % x**2 == 0:

print(’The rectangular framework is NOT rigid’)

else:

if np.trace(W) == len(M) + len(Mt) -1:

print(’The rectangular framework is rigid with

minimum bracings’)

else:

print(’The rectangular framework is rigid’)


