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ABSTRACT. The aim of this work is to present some interesting results
on weighted ergodic functions and prove the existence and uniqueness of
Stepanov-like pseudo almost automorphic solutions using the spectral de-
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also give the next challenge of this work.
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1. Introduction

In this work, we study the existence and uniqueness of Stepanov-like pseudo
almost periodic solutions of class r for the following neutral partial functional
differential equation

u'(t) = —Au(t) + L(ug) + f(t) for t € R, (1)

where —A : D(A) — X is the infinitesimal generator of a compact analytic
semigroup of uniformly bounded linear operators on a Banach space X, C, =
C([-r,0], D(A%)), 0 < a < 1, denotes the space of continuous functions from
[—7, 0] into D(A®), A% is the fractional a-power of A. This operator (A%, D(A%))
will be describe later and

lellc, = ||Aa<PHC([—r,0],X)~

For t > 0, and u € C([—r,a], D(A%)), a > 0 and u; denotes the history function
of C,, defined by

u(0) =u(t+0) for —r <6 <0.
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and L is a bounded linear operator from C, into X and f : R — X is a
continuous function.

Some recent contributions concerning pseudo almost automorphic solutions
for abstract differential equations similar to equation(1) have been made. Al-
most automorphic functions are more general than almost periodic functions
and they were introduced by Bochner [4, 5], for more details about this top-
ics we refer to the recents books [11, 13] where the author gave an important
overview about the theory of almost automorphic functions and their applica-
tions to differential equations. In [12] the authors introduced and studied a new
class of Stepanov-like almost automorphic functions with values in a Banach
space. Almost automorphic solutions in the context of differential equations has
been studied by many authors.

However, these results and many others obtain in literature are not correct.
For example the decomposition result of weighted pseudo almost periodic func-
tions in classical sens are not unique. The completeness based on the uniqueness
decomposition result is not true. It follows that the uniqueness of existence
weighted pseudo almost periodic solution based on the completeness is also not
true.

The aims of this work is to correct many results obtained in the literature and
also, we desire to generalize the results obtain in the classical results on weighted
pseudo almost periodic functions .

Our approach is based on the spectral decomposition of the phase space devel-
oped in [2] and a new approach developped in [3].

This work is to generalise [17] by proving the existence of Stepanov-like pseudo
almost automorphic solutions of equation (1) when the delay is distributed on
[—r,0].

This work is organised as follow, in section 2 we recall some preliminary re-
sults about analytic semigroups and fractional power associated to its generator
will be used throughout this work. In section 3, we recall some prelimary results
on variation of constants formula and spectral decomposition. In section 4 and
section 5, we recall some prelimary results on pseudo almost automorphic and
Stepanov like pseudo almost automorphic functions that will be used in this
work. In section 6, we prove some properties of SP-pseudo almost automor-
phic function of class r. In section 7, we discuss the main result of this paper.
Using the strict contraction principle we study the existence and uniqueness
of Stepanov-like pseudo almost automorphic solution of class r for equation(1).
Finally, for illustration, we propose to study the existence and uniqueness of SP-
pseudo almost automorphic solution for some model arising in the population
dynamics.
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2. Analytic semigroup

The purpose of this section is to collect some background materials required
throughout the paper. These materials include, on the one hand, the fractional
power A% for 0 < a < 1 of A.

Let (X,||.||) be a Banach space and « be a constant such that 0 < o < 1
and — A be the infinitesimal generator of a bounded analytic semigroup of linear
operator (T'(t))¢>o on X. We assume without loss of generality that 0 € p(A).
Note that if the assumption 0 € p(A) is not satisfied, one can substitute the op-
erator A by the operator (A — o) with o large enough such that 0 € p(4 —o1).
This allows us to define the fractional power A% for 0 < «a < 1, as a closed
linear invertible operator with domain D(A®) dense in X. The closeness of A%
implies that D(A®), endowed with the graph norm of A%, |z| = ||z| + ||A%]|,
is a Banach space. Since A® is invertible, its graph norm |[.| is equivalent to the
norm x|y = |[|[A%z|. Thus, D(A%) equipped with the norm |[.|,, is a Banach
space, which we denote by X,. For 0 < 8 < o < 1, the imbedding X, — Xp is
compact if the resolvent operator of A is compact. Also, the following properties
are well known.

Proposition 2.1. [14] Let 0 < o < 1. Assume that the operator —A is the
infinitesimal generator of an analytic semigroup (T(t));>0 on the Banach space
X satisfying 0 € p(A). Then we have

i) T(t) : X — D(A%) for every t > 0.

it) T(t) A% = AT (t)x for every x € D(A®) and t > 0.

iii) for every t >0, A*T'(t) is bounded on X and there exist My, >0 and w > 0
such that

|AYT(t)|| < Mae "t fort > 0.
w) If0 < a < B <1, D(AP) — D(A?).
v) There exists N, > 0 such that
[(T(t) = )A™[| < Nat® fort > 0.
Recall that A~ is given by the following formula

1

+oo
A = —/ LT (¢)dt,
L(a) Jo ®)

where the integral converges in the uniform operator topology for every a > 0
and I is the gamma function
Consequently, if T'(¢) is compact for each ¢ > 0, then A~¢ is compact.

3. Spectral decomposition

The purpose of this section is to collect some background materials on the
spectral decomposition of the phase space and variation of constants formula.
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To equation (1), we associate the following initial value problem

iu(t) = —Au(t) + L(us) + f(t) fort >0
Uy =P € Ca,

where f: Rt — X is a continuous function.
For each t > 0, we define the linear operator U(t) on C, by

Ut)e = vi(- ¢)
where v(., ) is the solution of the following homogeneous equation

%v(t) = —Av(t) + L(v;) for t > 0

vg = p € Cq.

Proposition 3.1. [1]Let Ay defined on Cy, by

D(Ay) -
= { € Ca ¢/ € Cuy 9(0) € D(A), (0) € DIA) and (0) = —Ap(0) + L()}

Aup = ¢' for ¢ € D(Ay).
Then Ay is the infinitesimal generator of the semigroup (U(t))i>o0 on Cy.
Let {Xo) be the space defined by
(Xo) ={Xoc: ce X}
where the function Xgc is defined by

0 if ¢€[—r0]
(Xoc)(0) =
c if 6=0.

Consider the extension Ay defined on C, @ (Xo) by

{ D(A) = { € C'([=r,0: Xa) : £(0) € D(4) and ¢(0)' € D(A)}
Ay = ¢+ Xo(Ap(0) + L(p) — ¢(0)").

We make the following assertion:

(Ho) The operator —A is the infinitesimal generator of an analytic semigroup
(T'(t))+>0 on the Banach space X and satisfies 0 € p(A).
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Lemma 3.2. [2] Assume that (Hy) holds. Then, Ay satisfies the Hille- Yosida
condition on Co @ (Xo) there exist M > 0, w € R such that J@, +oo[C p(Ay)
and

|()\I—.ZZ,)_”| < — for n€N and A > w.

M
(A—w)
Now, we can state the variation of constants formula associated to equation
(2).
Theorem 3.3. [1] Assume that (Hy) holds. Then for all p € Cy, the solution
u of equation (2) is given by the following variation of constants formula
t

u =U(t)p + /\EI_I:OO ; U(t — s)Br(Xof(s))ds for t >0,
where By = AAI — .;l;)*l.
Definition 3.4. We say a semigroup (U(t)):>0 is hyperbolic if
o(Ay) NiR = Q.
For the sequel, we make the following assumption:

(Hy) T'(t) is compact on D(A) for every ¢ > 0.

We get the following result on the spectral decomposition of the phase space
Cy.

Proposition 3.5. [1] Assume that (Hp) and (H;) hold. If the semigroup
(U(t)) >0 is hyperbolic, then the space Cy is decomposed as a direct sum

Co=S0U

of two U(t) invariant closed subspaces S and U such that the restricted semigroup
onU is a group and there exist positive constants M and w such that

Ut)p| < Me | for t >0 and p €S

Ut)p| < Me“tp| for t<0 and ¢ €U,
where S and U are called respectively the stable and unstable space, I1° and IT*

denote respectively the projection operator on S and U.

4. (u,v)-Pseudo Almost Automorphic Functions

Let BC(R, X) be the space of all bounded and continuous function from R
to X equipped with the uniform topology norm.

We denote by B the Lebesgue o-field of R and by M the set of all positive
measures p on B satisfying u(R) = +o00 and p([a, b)) < oo, for all a,b € R (a < b).

We recall some properties about pseudo almost automorphic functions. Let
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BC(R, X) be the space of all bounded and continuous function from R to X
equipped with the uniform topology norm.

Definition 4.1. A bounded continuous function ¢ : R — X is called almost
automorphic if for each real sequence (s,,), there exists a subsequence (s,) such
that

9(t) = lim o(t+sn)
is well defined for each ¢t € R and
lim g(t — 5.) = H(t)

n—+o0
for each t € R.

We denote by AA(R, X), the space of all such functions.
Proposition 4.2. [13] AA(R, X) equipped with the sup norm is a Banach space.

Definition 4.3. Let X; and X5 be two Banach spaces. A bounded continuous
function ¢ : R x X; — X3 is called almost automorphic in ¢ € R uniformly for
each z in X7 if for every real sequence (s,,), there exists a subsequence (s,,) such
that

g(t,z) = nEIfoo Ot + sp,x) in Xo

is well defined for each t € R and each x € X; and
lim g(t — sp,2) = ¢(t,x) in X

n—-+o0o

for each t € R and for every x € Xj.
Denote by AA(R x X1; X2) the space of all such functions.

Definition 4.4. A bounded continuous function ¢ : R — X is called compact
almost automorphic if for each real sequence (s,,), there exists a subsequence
(sn) such that

g(t)= lim ¢(t+s,) and lim g(t —s,) = o(¢)

n—-+oo n—-+4oo

uniformly on compact subsets of R.

We denote by AA.(R; X), the space of all such functions.
It is well known that AA.(R; X) is closed subsets of (BC(R, X),| .|oo)-

In view of the above, the proof of the next lemma is straightforward.
Lemma 4.5. [13] AA.(R; X) equipped with the sup norm is a Banach space.

Definition 4.6. Let X; and X5 be two Banach spaces. A continuous function
¢ : R x X; — Xs is called compact almost automorphic in ¢t € R if every real
sequence (s,,), there exists a subsequence (s,) such that

g(tvx) = ngr}kloo ¢(t + Sn, Cﬂ) and ngrfoog(t - Snax) = ¢(ta (ﬂ) in Xo

where the limits are uniform on compact subsets of R for each z € X;.
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Denote by AA (R x X1; X5) the space of all such functions.

To study delayed differential equations for which the history belong to
C([—r,0]; X), we introduce the space

1 +7
ER, X, ptyv,7) = {u € BO(R, Xa): _lim _ m/ (ee[stup , \u(@)\a)du(t) - o}.
, -7 t—r,t

In addition to above-mentioned space, we consider the following spaces

. I
E(R X Xooy X, 1y v) = {u € BOR x XaiXa): lim m/ [u(t, )| adp(t) = 0},
"("(]R X XQ§X0(HU':V7T)
. 1 +r
= {u € BOR X Xa; Xa) : Tlil_}_loc ey (9e[iufpr,z] \u(97$)|a)dﬂ«(t) = 0},

where in both cases the limit (as 7 — +00) is uniform in compact subset of X,,.

In view of previous definitions, it is clear that the spaces £(R, X, , v, ) and
E(R x Xo; Xo, v, 1) are continuously embedded in £(R, X,,, s, ) and E(R x
Xa, Xa, 1, V), respectively.

On the other hand, one can observe that a p-weighted pseudo almost periodic
functions is u-pseudo almost periodic, where the measure p is absolutely contin-
uous with respect to the Lebesgue measure and its Radon-Nikodym derivative
is p:

du(t) = p(t)dt
and v is the usual Lebesgue measure on R, i.e v([—7,7]) = 27 for all 7 > 0.

Example 4.7. [3] Let p be a nonnegative B-measurable function. Denote by pu
the positive measure defined by

1(A) = /A p(t)dt, for A€ B, 3)

where dt denotes the Lebesgue measure on R. The function p which occurs in
equation (3) is called the Radon-Nikodym derivative of p with respect to the
Lebesgue measure on R.

Definition 4.8. Let u,v € M. A bounded continuous function ¢ : R — X, is
called (u, v)-pseudo almost automorphic if ¢ = ¢1 + @2, where ¢; € AA(R, X,,)
and ¢o € E(R, Xo, p, ).

We denote by PAA(R, X, i, v) the space of all such functions.

Definition 4.9. A bounded continuous function ¢ : R — X is called compact
a — (u,v)-pseudo almost automorphic if ¢ = ¢1 + ¢ where ¢; € AA.(R; X,,)
and ¢z € E(R; Xa, p1,v).

We denote by PAA.(R; X, i, ), the space of all such functions.

Definition 4.10. A bounded continuous function ¢ : R x X, — X, is called
uniformly compact o — (p, v)-pseudo almost automorphic if ¢ = @1 + ¢o, where
¢1 € AAC(R X XOL;XQ) and ¢ € E(R X Xa;Xow,U'vV)'
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We denote by PAA.(R x X,; X, i1, V), the space of all such functions.

Definition 4.11. A bounded continuous function ¢ : R — X is called ao— (p, v)-
pseudo almost automorphic of class r (respectively compact o — (p, v)-pseudo
almost automorphic of class r) if ¢ = ¢1 + ¢ where ¢ € AAR; X,) and
¢a € E(R; Xq, p,v, 1) (respectively if ¢ = ¢1 + ¢o where ¢1 € AA(R; X,,) and
¢2 € E(R; Xo, 1,1, 7).

We denote by PAA(R; X4, pt, v, ) (respectively PAA(R; X, u, v, 7)) the space
of all such functions.

Definition 4.12. A bounded continuous function ¢ : R x X, — X, is called
uniformly a— (i, v)-pseudo almost automorphic of class r (respectively uniformly
a — (p, v)-pseudo compact almost automorphic of class r) if ¢ = ¢1 + ¢o, where
1 € AA(RX X ,; Xo) and ¢ € E(RX X5 X, i1, v, 1) (respectively if ¢ = ¢1+¢a,
where ¢ € AA.(R x Xo; Xo) and ¢2 € E(R X Xo; Xo, 1,0, 7).

We denote by PAA(RX X ; X, i1, v, 1) (respectively PAA.(Rx Xo; Xo, (4, V,7))
the space of all such functions.

5. (u,v)-Stepanov-Like Pseudo Almost Automorphic Functions

Definition 5.1. The Bochner transform f°(t,s), t € R, s € [0, 1], of a function
f(t) on R, with values in X, is defined by

Fot,s) = f(t + ).
Remark 5.1. If f = h + ¢, then f° = h® 4+ ¢ Moreover, (Af)? = Af? for each

scalar A.

Definition 5.2. The Bochner transform F(¢,s,u), t € R, s € [0,1], u € X of
a function F(¢,u) on R x X, with values in X, is defined by

Fb(t,s,u) = F(t+ s,u) for each u € X.

Definition 5.3. Let p € [1,4+00[. The space BSP(R, X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f on R with
values in X such that f* € L>(R, LP([0,1], X)). This is a Banach space with
the norm

Il =sup ([ I566)eas)

Definition 5.4. A function f € BSP(R, X, ) is called (p,)-SP pseudo-almost
automorphic (or Stepanov-like pseudo-almost automorphic) if it can be expressed
as f = h+g, where h® € AA(R, LP((0,1), X,,)) and ¢* € E(R, LP((0,1), X4), i, v).
The collection of such functions will be denoted by PAASP (R, X, i1, V).

In other words, a function f € LP(R,X,) is said to be SP-pseudo-almost
automorphic if its Bochner transform f? : R — LP(0,1), X) is pseudo-almost
automorphic in the sense that there exist two functions h, ¢ : R — X such that
f =h+ ¢, where h® € AA(R, LP((0,1), X)) and ¢® € E(R, LP((0,1), X), 1, V),
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i.e., according to [12] (Definition 2.5 Page 2660.), for each real sequence (s.,),

there exists a subsequence (s,) and a function g € L} (R; X) such that

lim (/f1 lg(s) — h(s+sn)\1’ds>7 =0

n—-+o0o

3=

and
1

lim (/tHl lg(s — spn) — h(s)\pds> T =0

n—-+oo

pointwise on R and

i ([ tetsas) e <o

T

Definition 5.5. A function f € BSP(R,X) is called (u,v)-SP-pseudo-almost
automorphic of infinite class (or Stepanov-like pseudo-almost automorphic of
class ) if it can be expressed as f = h+ ¢, where h® € AA(R, L?((0,1), X)) and
o’ € E(R,LP((0,1), X), u,v,7) ie.,

1 T 0+1 1
lim / sup </ S pds)pd t) =0.
Tt U[_Tv T] —7 O€[t—r,t] 0 |(p( )| IU‘( )

The collection of such functions will be denoted by PAASP(R, X, u, v,r).

Definition 5.6. A function f : R x X; — Xy, (t,z) — f(t,x) with f(.,x) €
LP(R, X3) is called (u, v)-SP-pseudo-almost automorphic of class r (or Stepanov-
like pseudo-almost automorphic of class r) if it can be expressed as f = h + ¢,
where h® € AA(R x X1, LP((0,1), X5)) and ¢ € E[(Rx X1, LP((0,1), X3), u, v, 7]

ie.,

The collection of such functions will be denoted by PAASP[Rx X7, LP((0,1), X2),
Wy, ).
Definition 5.7. A bounded continuous function ¢ : R — X is called (p,v)-

SP-pseudo compact almost automorphic of class r if ¢ = ¢1 + ¢p2 where ¢ €
AA(R, LP((0,1), X)) and ¢2 € E(R; LP((0,1), X), p, v, 7).

We denote by PAA.SP(R, LP((0,1), X), u,v,r), the space of all such func-
tions.

1 T 0+1 » %
lim / sup (/ s, T ds) du(t) = 0.
T+too l/[_T7 T] T OE[t—r,t] 0 |(p( )|X2 IU( )

Definition 5.8. Let X; and X5 be two Banach spaces. A bounded continuous
function

¢ : Rx X; — X, is called uniformly (u,r)-SP-pseudo almost automorphic
of class r (respectively uniformly pseudo compact almost automorphic of class
’I“) if @ = ¢1 + @2, where ¢ € AA(R X Xl,Lp((O,l),Xg)) and ¢o € E(R X
X1, LP((0,1), X2), p, v, 1) (respectively if ¢ = ¢1 + ¢o, where ¢ € AA(R x
le Lp((ov 1)3 XZ)) and ¢2 € 5(R X Xla Lp((ov 1); X2)7 u, v, T))
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We denote by PAASP(Rx X1, LP((0,1), X3), p, v, 00) (respectively PAA.SP(Rx
X1,LP((0,1), X2), p, v, 7)) the space of all such functions.

6. Properties of y-Stepanov-Like Pseudo Almost Automorphic
Functions of Class r

From pu,v € M, we formulate the following hypothese.

(Hz) Let p, v € M be such that limsup wl=r7)
rtoo V([=T,7])

Lemma 6.1. Assume (Hp) holds. PAASP(R, X, u,v,7) is a closed subspace

of BSP(R, X,,).

Proof. Let (x,)n, be a sequence in PAASP(R; LP((0,1),X),u,v,r) such that

1i_{n Zn = x in BSP(R; X,,). For each n, let z,, =y, + 2, with

yz € AA(Ra Lp((071)7Xa)) and ZZ € 5(R7 Lp((oal)vXa)aﬂvl/7T)' (yn)n Ccon-

verges to some y € BSP(R; X, ) and (z, ), also converges to some z € BSP(R; X,,).

In[12] Theorem 2.3, y € AA(R; LP((0,1),X,)). It remains to show that z €

ER; LP((0,1), Xa), p, v, 1)

Since
+7 0+1 %
[ osw ([ 1s)mds) duto
1\ Jo

—7 O€[t—mrit

=0 < o0.

1

= /+T sup | (/:H |2(s) — zn(s) + zn(s)|§ds);du(t),

-7 O€ft—rt

then by the Minkowski’s inequality, we also have

ﬁ +7 sup (/99+1 ‘z(s)|zds)%d“(t)

—7 O€[t—r,t]

1 o "04+1 . 1 0+1 . 1
< — Zn ds) P n ds) P |du(t
< o) e () e - m@zas) P ([ eds) P an

1 +r t+1 b

[—— g _ P
< oo ) s ([ e - sa@lds) P dut)
1 +7 0+1 1
+ — sup (/ \zn(s)|ids)”du(t)
V[_Ta 7'] J—7 0€[t—r,t] ']
-, 1 +7 641 1
<z = zallgpo x DD s ([ o)) o).
v([=7,7]) v=7, 7] Jor eeft—r 0

Then we get z € E(R, LP((0,1), X)), u, v, 1), hence x € PAASP(R, X, u, v, 7).
O

Consequently, we have the following lemma;:

Lemma 6.2. The space PAASP(R; LP((0,1), X), u, v, r) endowed with the || . || sr
norm is a Banach space.

Next, we give a characterization of (u, v)-ergodic functions of class r.
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Theorem 6.3. (Hpy) holds and let p,v € M and I be a bounded interval (even-
tually I = D). Assume that f € BSP(R, X). Then the following assertions are
equivalent:

i) fe 5(R,Lp((§), 1), Xa), v, 7). o X
) 0 R VD ooy () ORS00
+ 1
,u({te[—T,T]\I: sup ](/9 |f(s)|§ds)p >€})

. oet—r,t
A 0, 1 =0.
i) Ve > 0, I AN D

0+1 1
Proof. i) < i) Let us pose A =v(I), B= / sup (/ |f(s)|gds) " dpu(t).
I 0€ft—n,t] 0

Since the interval I is bounded and the function f is bounded and continuous
then A and B € R. For 7 > 0 such that I C [—7,7] and v([—7,7]\ I) > 0, we
have

: o)
m /[*T,T]\I GGS[tuE:”,t] (/9 ‘f(s)‘ads) dﬂ(t)

6+1 1
el o, ey i

v([=m,7]) | o B
(e i b (e /[] P () 1) auo - 7],

From above and the fact that v(R) = +o00, we conclude that i) is equivalent
to

[T N /:Hf(s)zds)’l’du(t)—o,

T—+oo V([—T,T]) —7 O€t—rt]

that is 7).

i4i) = 4i) Let us pose A% and B: the following sets
041 1
Ai:{te[—r,r]\[: sup (/ |f(s)|§ds>p >5}
Oelt—r,t] 0
and
0-+1 1
Bi:{te[—T,T]\I): sup (/ \f(s)\ids)p SE}.
oct—r,t] 0
Assume that 4ii) holds, that is

AE
lim p(AS)

(e VI A W
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From the equality

0+1 1
[ s ([ 1s)kds) aut
[—7,7I\I OE€[t—r,t] [

0+1 1 0+1 1
- / swp / [7(s) 2s) ” dia(t) + / sp / (7(5) ds) " du(t).
A 0€[t—r,t] 0 Bz 0€[t—r,t] 0

We deduce that for 7 sufficiently large

_r . T Pds) P A3 p(BS)
Ar N D) /[77,7]\Iee?tf”r,ﬂ () 1Ods) u < Wlsr 0 4o gy

By using (Hz), it follows that
1 +r

0+1 1
forall e >0, lim —M—— sup / f(8)|Bds)” du(t) < ae, for any € >0,
T—=+oo v([—7, 7\ I) J_+ felt—r,t] ( 0 ) ) ®)
consequently (ii) holds.

i1) = 141) Assume that ¢3) holds. From the following inequality

0+1 1 0+1 1
P p -
ALﬂﬂveeifm](A F(9)[2ds) 7 du(t) > /¥9€§3m](4 [ (s)[ds ) ? du(t)
S . N (o) ds) P _mAD
D o g ([ WM ) > ey
1 o+1 o\ r(A3)

e ooty (W) Pt >

for 7 sufficiently large, we obtain equation (4), that is 7). O

From p € M, we formulate the following hypotheses.
(Hg) For all a, b and ¢ € R, such that 0 < a < b < ¢, there exist Jp and
ag > 0 such that
[0] > b0 = pla+6,b+8) > apu(d,c+96).

(Hy4) For all 7 € R, there exist 8 > 0 and a bounded interval I such that

p{a+7: a€ A}) < Bu(A) when A € B satisfies ANT = Q.
We have the following results due to [3]
Lemma 6.4. [3] Hypothesis (Hy) implies (Hg).
Lemma 6.5. [3, 6] p,v € M satisfy (Hy) and f € PAA(R, X, u,v) be such that

f=9+h
where g € AP(R, X) and h € ER, X, u,v). Then
{g(t), t e R} C {f(t), t € R} (the closure of the range of f).

Lemma 6.6. [17] Let p,v € M. Assume (Hy) holds. Then the decomposition
of a (u,v)-pseudo-almost periodic function ¢ = ¢1 + ¢o2, where ¢p1 € AAR, X)
and ¢y € E(R, X, p, v, 1), is unique.
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Definition 6.7. Let p1, e € M. We say that p; is equivalent to pe, denoting
this as p1 ~ po if there exist constants a and S > 0 and a bounded interval I
(eventually I = ) such that

ap(A) < pa(A) < Bui(A), when A € B satisfies ANT = 0.

From [3] ~ is a binary equivalence relation on M. The equivalence class of a
given measure 4 € M will then be denoted by

cdp)={weM: p~w}.

Theorem 6.8. Let py, po, 1,2 € M. If p1 ~ po and vy ~ va,
then PAASP(R, X, p1,v1,7) = PAASP(R, X, pio, V2, 7).

Proof. Since p1 ~ s and v ~ vy there exist some constants aq, as, 51,82 > 0
and a bounded interval I (eventually I = @) such that ajpui(A) < pg(A) <
B1u1(A) and gy (A) < wa(A) < Bavi(A) for each A € B satisfies ANT =0 i.e
1 < 1 < 1
ﬁgyl(A) - VQ(A) - a2V1(A).

Since p1 ~ pe and B is the Lebesgue o-field, we obtain for 7 sufficiently large,
it follows that

alyl({t €[—7,7I\I: 96Ftu_pr , (/99+1 If(s)\gds)% > e})
Bavi([=7, 7]\ I)

Mz({t €l-7,7\I: ee?tlipr,t] (/99+1 |f(S)IZdS)% > 5})

<
B va([=7, 7]\ 1)

[31/L1({t € [—7,7] : Gesfuprf (/ 9)|pds‘ 1}7 > s})

azvi([=7, 7]\ I)
By using Theorem 6.3 we deduce that E(R, X, u1,v1,7) = ER, X, o, v, ).

From the definition of a (u, v)-pseudo almost periodic function, we deduce that
PAASP(R, X, p1,v1,7) = PAASP(R, X4, fi2, V2, 7). O

<

Let pu,v € M we denote by
c(p,v) ={wi, w2 € M: p~wyand v~ ws}.

Lemma 6.9. [6] Let u,v € M satisfy (Hg). Then PAP(R, X, p, ) is invariant
by translation, that is f € PAP(R, Xq, p,v) implies f, € PAP(R, X, pu,v) for
all v € R.

Corollary 6.10. Let p,v € M satisfy (Hz). Then PAASP(R, X, 1, 1) is in-
variant by translation, that is f € PAASP(R, Xo, p, v, 1) implies

[y € PAASP(R, Xq, p,v,1) for all v € R.

Proof. Tt suffices to prove that E(R, LP((0, 1), X), i, v, ) is invariant by transla-

0+1 1

tion. Let f € £(R, LP((0,1), Xo), p, v,7) and F*(0) = sup (/ |f(s)|§ds> !
0

oct—r,t]
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Then Ft € £(R, R, i, v), but since £(R, R, u, v) is invariant by translation, it fol-
lows that

/ F 0+ ) dut)

lir -
T~>+oo u([—‘r 7]

- T
= g L, () e i) P <o
which implies that f(. +v) € PAASP(R, Xq, pt, v, 7). O

In what follows, we prove some preliminary results concerning the composition
of (i, v)-Stepanov-pseudo almost periodic functions of class r.

Theorem 6.11. Let pu,v € M, ¢ € PAASP(R x X, Xo,pt,v,7) and h €
PAASP(R, Xq, p,v,1). Assume that there exists a function Ly : R — [0, +00]
sastisfies

|p(t, z1)—@(t, x2)| < Ly(t)|z1(t)—x2(t)|o for t € R and for x1,z2 € LP((0,1), X4).
()
If

lim o= /JFT ( sup Ld)(ﬁ))d,u(t) < oo and

rotoo v([=7,7]) Jr Noep—rit]

(6)
TET‘” m /_+T (0e[ts—urpt+1] L¢<9)) (/;H |£(S)‘gd8) %du(t) -

T

for each & € ER, Xy, p,v), then the function t — ¢(t, h(t)) belongs to
PAASP(R, X4, p, v, 7).

Proof. Assume that ¢ = ¢1-+¢2, h = hy+hy where ¢4 € AA(RxX, LP((0,1), X)),
P4 € E(R x X, LP((0,1), X), u,v,00) and kY € AA(R; LP((0,1), X)),
hS € E(R; LP((0,1), X), i, v, 00). Consider the following decomposition

o(t, h(t)) = d1(t, ha (1)) + [0t h(t)) — (£, ha ()] + G2 (t; 7 (1))-
(-
b

[¢

From [18], ¢1(., h1(.)) € AA(R; LP((0,1), X)). Now, we need to prove that both
LY
1

(.
¢* (., h(.) = ¢°(, l{( )) and g4(.. 12 (.)) belong to (R, LP((0, 1), Xa), p,v.7).
By equation (5), it follows that

p({telnm: sw / " 1000.0060) - 0060, (@) 2s)” > <))

oet—r,t
v([=7,7])

u({t € [-7,7] :aestupr ) /:H )|h2(0)]a )pds>% > 6})
v([-7,7])

<
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u({t el-7,7]: (Ge[tsiug)wl] L¢(0)) (Ges[tufjﬂ,t] (/:+1 |h2(9)|§ds)%) > 6}) |

<

v([=77])

Since hg is (p, v)-ergodic of class r, Theorem 6.3 and equation (6) yield that for
the above-mentioned e, we have

p({t € [-7,7]: <9€[ts_urr?t+1] Gesfuprf (/ |ha(8) |7 ds %) > 6})

P V(7D -

and then we obtain

w({retrnts s ([ 1601000 - o0 m(o)12as)
B - v (D) =0 @

By Theorem 6.3, equation (7) shows that t — ¢(t, h(t)) — ¢(¢, h1(t)) belongs to
ER,LP((0,1), Xo), p,v, 7).

=
V
™
——
~—

Since ¢4 is uniformly continuous on the compact set K = {h4(t) : t € R} with
respect to the second variable x, we deduce that for given € > 0, there exists
6 > 0 such that, for all t € R, & and & € K, one has

161 = Eallr < 6= |5(t,61(1) — P5(t, Eo(1))] < e.
Therefore, there exist n(e) and {z; }in (E) C K, such that
n(e)
K c | Bs(2:,0)
i=1
and then by Minkowski’s inequality we have

1

([ oatmepas)’

< (/tt+1|¢2(t,h1(t)) Golt, z)" ds)% (/tt“wz(t’%)”gds);
< €+T§: / |¢2t21|ds)%

Since

Vie{1,...,n(e)},
1 T 0+1 %
lim 7/ sup / D2(0,2;)|Pds )" du(t) =0,
T+ V([_T7 T]) T O€[t—r,t] ( 0 | 2( 7’)|O( ) ‘u( )

we deduce that

1 T 0+1 1
Ve > 0, 1imsup7/ sup (/ |92 (0, hl(ﬁ))|gds) “du(t) <e,
1Mo

rotoo V([=T7,7]) J_; Oct—r,t
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that implies

1 T 0+1 1
V>0, lim — / sup / 620 b (0)[2ds)” du(t) = 0.
] 2]

m=too v([—T7,7]) J_; O€[t—rt

Consequently ¢ — ¢o(t, h(t)) belongs to E(R, LP((0,1), X)), , v, 7). O

For p € M and 6 € R, we denote p;s the positive measure on (R, B) defined
by
ps(A) = p(la+0: ac A (®)

Lemma 6.12. [3] Let p € M satisfy (Hy). Then the measures u and ps are
equivalent for all § € R.

Lemma 6.13. [3] (H;) implies

for all o >0 limsup wllzr —ovr +0)) < +00.
rotoo (=T, 7))

We have the following result.

Theorem 6.14. Let u € PAASP(R, X, p, v, 1), then the function t — wu; be-
longs to PAA.SP(C([—r,0], Xa), 1, v, 7).

Proof. Assume that v = ¢g + h where g? € AA(R;LP((0,1),X,)) and h? €
E(R; LP((0,1), X4), p, v, 7). We can see that u; = g¢ + h:. We want to show that
g¥ € AA(R; LP((0,1), X,)) and hY € E(R; LP((0,1), X4), iy v, 7).

Firstly for a given sequence (s,,)men of real numbers, fix a subsequence (s, )nen
and v € BSP(R; X,) such that g(s + s,) — v(s) uniformly on compact subsets
of R. Let K C R be an arbitrary compact and L > 0 such that K C [-L, L].
For ¢ > 0, fix N. 1, € N such that ||g(s + s,) — v(s)||sr,a < € for s € [-L, L]
whenever n > N, ;. For t € K and n > N, 1, we have

Igt+s, —villspa < sup [lg(0 + sn) — v(0)]|sr.a
0e[—L,L)

< e

In view of above, g¢4s, converges to v; uniformly on K. Similary, one can prove
that v;_g, converges to u; uniformly on K. Thus, the function s — g5 belongs
to AA(LP(0,1),Cy).

Let us denote by

Ms(r) = uaq—ln = / i (om0 (/:H ) dst)

where ps and vs are the positive measure defined by equation (8). By using

Lemma 6.12, it follows that p, and p are equivalent and vs and v are also

equivalent. Then by using Theorem 6.8 we have E(R, LP((0,1), X4), fta, Va, ) =

E(R,LP((0,1), X,), p, v, 1), therefore h € E(R, LP((0,1), Xo), s Vo, T), that is
lim Ms(r) =0, forall a €R.

T—+00
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On the other hand, for » > 0 we have

+7 0+1
U([717T])/T 66[1 rf (/ s:[up Ih(s + &)la ) ds)pd’u()

1 +7 0+1+¢ 1
< 7/ sup ( sup / |h(s)|st>pd/¢(t)
v([=77D) Jor eclt—ri] Neel—r0 Jote
1 +7 0+1 1
< —— su / h(s)|%ds) P du(t
N v([—7,7]) /77— se[t—gr,t] ( 0 Ih(s)le ) w(t)
1 +7 6+1 1
< su / h(s)|Pds)? du(t
< o/ ot (7 menas) 7 an
1 +7 0+1 1
sup / h(s)|Pds)? du(t
e e, (f, In@1Rde) P dut)
+r4r
= / (/ 5)[ds) P dp(t + 1)
_T T]) T—r SE[t T, t]
1 +7 0+1 1
sup h(s ids Pdu(t),
o L e (T ethas) Paute

it follows that

+T 0+1 N
ﬁ /_T bclton] (/e (EES[EF:’O] (s +€)[) "ds ) 7 du(t)

: ﬁ /_T Dcltan ] (/:+1 |h(8)|pds>pdu(t)

+

T e (T e a1 x AT 4]
* v([-T—r 747 J_rp ee?tfpm] (/9 Ih( )|pd> du(t ) x [ v([—7,7]) ]
Consequently
1 +r
i (se?ﬂ y [55[1_15,0] 10 +€)I] ) dpu(t)
vl=r —m7+r)) DR SR S
< [y et gy [ oo

which shows using Lemma 6.12 and Lemma 6.13 that which shows that wu,
belongs to PAA.SP(C([-r,0], X4), i, v,7). Thus, we obtain the desired result.
O

7. Weighted Stepanov Like pseudo Almost Automorphic Solutions of
Class r

In what follows, we will be looking at the existence of bounded integral solu-
tion of equation(1).

Theorem 7.1. Assume that (H;) hold and the semigroup (U(t))i>o is hyper-
bolic. If f € BSP(R, X), then there exists a unique bounded solution u of equa-
tion (1) on R, given by

Ut
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t

= lim_ - U (t — $)IT*(BrXo f(s))ds
t
+ lim U (t — )T (BrXo f(s))ds (9)
A——+oo +o0
for t eR,

where By = A — Ay)~t for X > @, II° and IT* are the projections of C,, onto
the stable and unstable subspaces, respectively.

Proof. Let us first prove that the limits in equation (9). For ¢ € R, we have

| B e~ w(t—s)

/_oo U (t — $)IT°(BrXof(s))|ads < MM|IT® ‘/ 7s)| "
< MMHS‘[/;%U(SW

! i (/t:w %Iﬂs)us)}

1 1
Let ¢ such that — + — = 1. Using the Hoélder’s inequality, we obtain
q P

/ U* (t — $)IT° (B Xof(s))]ads

—00

Mﬂnﬂ[/jlwczs)‘l‘(/:l |f(s)|pds>%
t—n+1 (t—s) % t—n+1 %
+Z[ | et ([ )]

—n

IN

IA
=
e
L —
+
LI
—
-+ |
=}
£
& T
2| =
N———
Q=
/N
v\
N
=
—
Vo)
S~—
=
o
Vo)
N——
SIS

+Z e ([ )]
< e (") T[]

qwn

SN e s

— qw(n—1)
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MM ||| || s» W aq,\d
S T 1—agq € S Ids ) 9
(wq) e [(/U )
MM|I|||fllsp Cag frm o \E
+ ——- (n—1) ds) @
(wa) @ »12:2[” </qw<n—1>e S) ]
o B on (% e mengy) by OIS o 33§ gy
(wq) a ° (wq)a n=2
ST PR (L I ETPRIEE § TS
(wq) (wq) n=2
MM fllse [ (% o —aq, \% . MMITfllsp , go 12 <5 —un
< —aa e °s ds)? + 7( +1)49 Z e
(wq) ' 7 [(/0 ) (wq) @ n=2
“+o0
Since the serie Z e~ “" is convergent, it follows that
n=1
t ~
[ - am @l < & (10
—00
with
o T 1™ g TR 5
- 11—« 1
(wg) @ o wq) =
Set

F(n,s,t) = U(t — s)IT°(By\Xo f(s)) forn € N for s < t.

For n is sufficiently large and o < t, we have

‘/joo Flns,t)ds| < Mﬁ\nﬂ[/a: %:;:ds)%(/ilms)ws)%
+n2::2(/0

oc—nt1 g—aw(t—s)

) ([T )]

MM|1T° qw(o+1) 1
< \ 1|_Hf\|sv (/ e_ss_aqu> 3
4 qu(t—o)
(wq)
+HM|n-sH|f|\Sp (@ 1 1) 1 i (/‘qw(t o+n) “s*aq)%]
1
(wq)q n=2 quw(t—o+n— 1)
MM |1I* qw(o+1) 1
< MM e f e (qu(t — )" 7ds) ¥
q

(wq) q w(t—o)

MM |1T® 1 >
+ | Hlf”sp (eqw + 1) 7 x e—w(t—a) Z e~ wn
(wg)a
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MM|TI®||| £] sp (t— o) ( /qw(0+1) e*sds)%
1
(wq)d qu(t—o)

MM|I* 1 oo
N [T°]1I £l s» (€™ £ 1)1 x o) S gmen

1
(wg) n=2
MM|1° 1
| |Qf\|sp (1= e ™) T x (t— ) e (=)
(wg) 9

MM |11® 1 o
+ | H|f”SP (equ + 1) 7 x e—u(t—a) Z e~ wn
n=2

1
(wg) 4
< Ki(t— o_)faefw(tfa) 4 Kpe@(t=o)
where
MM|1I* 1 MM|I* 1
Ky = [ Hlfllsp (1= e %) T et Ky = \ Hllf\lsp (€ +1)T 3 en
(wq) @ (wq) e n=2

It follow that for n and m sufficiently large and o < t, we have

t t
‘ / F(n,s,t)ds — / F(m,s,t)ds|
— oo — oo a

< ‘/;6 F(n,s,t)ds‘(x + ’/j F(m,s,t)ds‘(x
t t
+|/ F(n,s,i&)ds—/;7 F(m,s,t)ds’a

< 2Ki(t—o) e T L Ko @ty 4 ’/

o

t t
F(n,s,t)ds — / F(m,s,t)ds| .
o [e3

t

Since lim F(n,s,t)ds exists, then
n——+00

+ o
t t
lim sup ‘/ F(n,&t)ds—/ F(m,s,t)ds

n,m—-4oo

< 2(Ky (t—0) e =) f Kyem (=),

If 0 — —o0, then

t t
lim sup ’/ F(n,s,t)ds f/ F(m,s,t)ds‘ = 0.
n,m—-400 —00 —00
Thus, by the completeness of the phase space B, we deduce that the limit
t t
lim F(n,s,t)ds = lim Ut — s)I1° (B, Xog(s))ds

n—+oo J_ n—+oo J_

exists. In addition, one can see from equation (10) that the function
t

mt— lirf U (t — s)I1°(Bp Xof(s))ds
n—+oo [
is bounded on R. Similarly, we can show that the function
o
Ny :t— lim Ut — s)II*(BrXof(s))ds

n—-+oo t
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is well defined and bounded on R. Using the same argument as in [1, Theorem
5.9], the integral solution w given by the formula
t t

u = lim U (t—s)IT°(ByXo f (s))ds+ lim U™ (t—s)IT*(ByXo f(s))ds

A——+oo o A——+oo +oo
for t € R is the only bounded integral solution of equation (1) on R.H

Theorem 7.2. Let g € E(R,LP((0,1), Xo), p, v, 1) and T’ be the mapping defined
by

t t
Ig(t) = lim U’ (t—s)IT° (BaXog(s))ds+ lim U" (t—s)IT"(BrXog(s))ds fort € R.
A—+oc0o oo A—+4o00 +oo
Ifp>1, thenTg € ER, X,y v, 7).
Proof. For each n =1,2,3,... and t € R, set

t—n—+1 t+n

Xn(t) = lim U (t—s)I1° (Br Xog(s))ds— lim U™ (t—s)IT" (BxXog(s))ds.
A—+too f,_ A=rtoo Jiyno1
We have
| X ()|
t—m+1 -
< lim U (t — s)IT°(BxX09g(5))|ads
A—=+oo Ji_p
t+n .
+ lim |L{“(t7s)H“(BAXOg(s))\ads] (0)
A=+00 Jipn—1
t—n+1 -
< AHTOO - lAZ U (t — $)IT° (BxXog(s))llds
) t+n —
£ dm A (BxXog(s))llds] (0)
____ [ft=nt+l o—w(t—s) ____ fttn w(t—s)
< MM — 1I%] |g(s)|ads + MM < 1% llg(s)llds
t—n (t—s) t+n—1 (s —1)
t—n+l —w(t—s) . t+n  ow(t—s) N
< K[[ T G le@ads + [ E T lg(o)la]ds
Set L o
K = max(M M|II°|, M M|II"]).
Case:1 n=1.
t o —w(t—s) 1l pw(t—s)
XN < K| [ S d g |a
X0l < K[ [ G e+ [ T ool ds
1 1 . . . . .
Let ¢ such that — + — = 1. Using the Holder’s inequality, we obtain
q P
[X1(8)]a
t e—quw(t—s) % t % t pquw(t—s) % t+1 %
< K[ o) () (1 S ([ o)
t
<

([ wnraas) [( [ ogas) ([ laas) ]
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I ([T ersma) ([ taas)” + ([ oorgas) ]

(wgq) @

IN

Let us pose

qw 1
(K, w) = 7(/ efss*qads) *, then we have
0

t

121 (0)]a < 74K, ) / » ato)” + /

Since g € E(R, LP((0,1), Xa), s v,7) , then X1 (t) € E(R, Xa), 1, v,7)

t+1

(s)zds)"]

Case:2n > 2
We use same reasonning like above
1 1 . .. . . .
Let g such that — + — = 1. Using the Holder’s inequality, we obtain
q P
| Xn(8)|a

K(/t‘tfnﬂ %ds) 3 (/ttfnﬂ |g(s)|gds)%

—n —n

IA

t+n 1

t+n  oqw(t—s) 1 1
q » D
- K(/WH (Sit)qads) </t+n71 lg(s)[ds )

< K(/qit:_l) z;a x (WQ)aq—lds)é[(/t:"“ |g(5)|gds)% + (/t::|g(s)|gds>%]
wn 1 t—n+1 1 t+n %
< i(wq;f%w( L) (7 emas)” - (f 7 leoas)”]
qun 1 t—n+1 1
- w%uw_n e (awln = 1)) *[([ " la(olnas)”
s (7 a7
wn 1 t—n+1 1 t+ 1
< (w; ro ([ ) ([ o)+ (7 lateias)”]
1 o —wm t—n+1 % t+n %
< (w; re =i e ([T gkds) (7 loelzds) ]
< e snio-ye|(f T k)T ([ eormas) ]
1 n t—n+l 1 t+n 1
< (wzéwqul)qe ([ ozas)+ ([ " lotozas)”]



Stepanov-Like Pseudo Almost Automorphic Solutions under the light of measure theory 151

K w F t—n+1 1 i ,
< (wq)% (e +1)ae [(/t—n |g(8)|gds> + </t+n_1 |g(S)|gds> ]
1 t—n+1 % ttn %
< (wq)% (e +1)4q [(/t—n |9(8)|st) + (/t+n_1 |9(8)|gds> ]
Set
0q (K, w) = (e + 1),

Q=

(wg)
N
it follows from the Weierstrass test that the sequence of functions Z X, (t) is

n=1
uniformly convergent on R.

Since g c S(R, LP((O’ l)aXa)?,u7V7 T) and

1 X ()] < Sq(K,w) K/ Hg(s)deS)% + (/t

t—n +n—1

t—n—+1 t+n

olzds)*].
where

Sq(K,w) = max(yq(K,w), 64(K,w)),

N
we conclude that X, € (R, X, p, v, 7). Thus Z Xn(t) € E(R, X, 1y v, 1) and
n=1

its uniform limit belongs £(R, X, p, v,7) by Lemma 6.1. Observing that

+oo
Tg(t) =Y Xu(t),
n=1

it follows that T'g(t) € E(R, X, p, v, 7). O

Theorem 7.3. Let g € E(R,LP((0,1), X)), p, v, 7).
Ifp > 1, then Tg € E[R, LP((0, 1), Xo), 1,1, 7)-

Proof. For each n =1,2,3,..., let be X,, defined as previously.

Case 1 n=1.
‘We have

Xl < pee)( [

t—1

t

s oL
slids)” + ([ latolzas)"]"
t

Using the Minkowski’s inequality, we obtain

(/geﬂ |X1(S)\st)%
s [ emae)Pa]")F o+ ([ o) ]7) P

v (s [ lgorae)? + (s [ o))

s€[0,0+1] Js— s€[0,60+1

IN

IN
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1

s [( [ aenas) 7+ ([T ainas)?]
vq(fﬂw)[(/e: la(s)[2.ds) ¥ + (/: lo()12ds) ?
([ armas) ([ laras) 7).

It follows that

IA

IN

1 +7 (/6+1‘X()‘Pd)%d )
— sup s)|qds w(t
v([—-7,7]) J_+ 0€[t—r,t] 0 !

ey [, (L i) o

IN

1 +7

M7 (e i A (/:+1 |9(5)|Zd8)%du(t)

+7 6+1 1
o f e ([ lelzas) Pan +

1 +7

0+2 1
v e, ([ e ds) P auo)].

where

Case: 2 n > 2.
By use the same reasonning like above, we have

ol < ([ o)+ ([ i) T

where

-Q\»—A

K
(K, w) = —— (47 4 1)
(wg) @
Using the Minkowski’s inequality, we obtain

([ ixaozas)?
s (7 [ woae) )P (7 (7 moae) )P
Ssu£+1]/ o |9(5)|Zd£)% + (se[sel,lg+1] /::L”_I \g(g)\gd&“)%]

(,
5, (K. w)| (/: la(s)[2ds) P + (/:"fl l9(o)12s) 7]
[(

IN

IN

0q(K,w [

IN

1

0—n+1 1 0—n+2 1
s ([ la@gas) 7+ ([ lalas) ?
0— 0—n+1

IN
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S a7 aormas) ],
It follows that
ﬁ /::T eg?tu,pr 4 (/99+1 IX"L(S)IZdS> %dp,(t)

8a(K,w) [u([*%r, 7)) /—J:—T QE?tu—pr 1] (/(99_:,,n+l |g(8)\§ds) %d“(t)

1 +7

0—n+2 v 1
+— sup / g(s)|ads) P du(t
v([=1,7]) J -+ oc(t—r,t] ( 0—n+1 l9(s)] ) ®
1 +7 0+n 1
tos [ s ([ la)lzds) P due) +
V([—7'7 T]) —7 O€[t—r,t] YJOo4+n—1

+ﬁ /::T ee[stufi,yt] (/99+n+1 |!](S)‘zds) %du(t)] .

+n
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IA

Thus we have

0—n+1 1
SalK,w / / lg(s)[ds ) P dpu(t)
[ T, T ) T GE[t Tt —

n

IN

1 4+ 6—n+2 1
Lt s ([ g 7as) P au(o)
v([—-7,7]) J -+ oe[t—r,t] 0—n+1

T ([ la)inds) 7 auo +
sup g(s)|2ds m
V([*T»T]) —7 O€[t—mr,t] 0

+n—1

L ([ gonds) 7 duo)]
+ sup / g(s)|qas M ’
v([-7,7]) J -~ 0c[t—r,t]

0+n
where

S‘Z(Ka w) = maX(V(K7 CU), 5(Ka LU))
We conclude that X,, € E(R, LP((0,1), Xo), i, v, 7).
Thus Z Xn(t) € E(R,LP((0,1), Xy ), p, v, 7) and its uniform limit belongs

E(R, Lp((O 1), X4), i, v,7) by Lemma 6.1. Observing that

+o00o
= Xa()
n=1

it follows that T'g(t) € E(R, LP((0,1), X4 ), pt, v, 7). O

Theorem 7.4. Let h € AA.(R; LP((0,1), X)), thenTh € AA.(R; L?((0,1),X)).

Proof. For a given sequence ($,,)men of real numbers, fix a subsequence (s, )nen
and v € BSP(R; X,,) such that h(t+s,) converges to v(t) and v(t—s,) converges
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to h(t) uniformly on compact subsets of R. From [8], if

t
w(t+s,) = hm U (t — $)IT°(BrXoh(s + s,))ds

— 00 — 00

t
+ )\lim Ut — s)IT*(BrXoh(s + sp))ds fort € R, n € N,
— 00 400

then w(t + s, ) converges to
¢ ¢

z(t) = lim U (t—s)I1°(By Xov(s))ds+ lim U (t—s)IT*( By Xov(s))ds.

A—+oo o A——+oco o0

It remains to prove that the convergence is uniform on all compact subset of R.
We get the following estimates

S

w(s+s,)—2(s) = lim U (s — O)IT° (BxXo[h(0 + s,) — v(0)]dO

A—=+oo J o

+ lim / U™ (s — O)TT*(BrXo[h(0 + s,,) — v(6)]d6
A—+oo +

—w(s 9)
[w(s+ sn) — 2(8)]a < K/ v(0) — h(0 + s,)|dO

00 ew(s‘ 9)
4 K/S g 0) =0+ 5,1,
where . -
K = max(M M |1T°|, M M |TT%|).
For each k =1,2,3,.

s—k+1 e—w(s—0) ew(s—0)
K/ | (0)—h(0+s,) |d0+K/ [v(0)—h(0+45,)|adb.
@ +h—1 (s —0)*
Case: 1n=1
i) = K [ )= (0| do+ K o) d
() = K [ o) -h(os o+ / a0 k(0|
Using the Hélder’s inequality, we obtain
Xl(S)
K qwn % s %
< — ([ esmas) ([ o) - ho+ slzas)
(wq) q 0 s—1

+ (/:H 0(6) — h(0 + sn)|gd9)%}

< ’yq(K,w)K/:lw(G) h(0+sn)|pd0>% (/:Hu(o) h(9+sn)|pd9)%}
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where

K qun %

Yq(K,w) = ﬁ(/ e_ss_qad8> ;
(wg) = /o

and by the Minkowski’s inequality, we have

1

([ xega) < swal([7 ([ 0o -w0ssrn)])
+(/tt+l [(/+1 [(6) —h(9+sn)|§d9)%r)%}

N

qun qu(n—1) .
< Wq(K,w)(/ e_ss_qads—/ e_ss_qo‘ds)
0 0
[ sup / [0(6) — h(0 + s, d6)”
s€ft,t+1] Js—1
s+1 1
+< sup / |v(9)—h(9+8n)‘§d9)p]
s€t,t+1] Js
t+1 1
< 2’yq(K,w)sup</ [0(6) ~ h(6 + 5,)lds) .
teR t

Case:2 n > 2

s—k+1 e—w(s—Q) s+k ew(s—Q)
Xu(s) = K 0(0)~h(O+s,)|dO+ K / O |0(0)—h(O+5,)|db.
s—k (S - 9) s+k—1 ( - 9)
Using the Holder’s inequality, we obtain
Xk(s)
K qwn 1 s—k+1 1
< — e s 9%s ) ¢ v(0) — h(0 + sp, Zde P
< oo (5 V([ @ = o+ soian)
stk 1
v _ sn)|P P
+ (/S+k_l\ (0) = h(0 + s,)[5.d0) 7 |

k

5y (K, w)[(/s; +

s—

N u0) - ho + sn)|7d6) %],

IN

1o0) = -+ sPa0) P+ ([

s+k—1

where

Q=

K
bg(K,w) = —= (™ +1)7,
(wq)
and by the Minkowski’s inequality, we have
1 s—k+1

( /tt+l|xk<s>|pds)” < smw)( /+ ([ w@ w0+ spas)’])’
+(/tt+1 [(/:1 lo(6) — h(9+sn)|§d0)%r)%]
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< sK)[( sw /MH |v(9)—h(0+sn)|pd0)%

s€ft,t+1] Js—k

+( swp /:HC |v(0)7h(0+sn)|§d0)%}

s€lt,t+1] Js+k—1

t+1 1
< 26,(K,w)sup (/ [0(0) — (0 + 5,)[2ds) ",
t

teR
Since
+o00 s e—w(s—Q) s eW(S_G)
> X -k [ G OOl K [ o (0) (05, b,
k=1 —00 “+o0

it follows that
t+1 1 t+1 i
(/ (s +50) — 2(s) s < 25, (K. ) sup(/ 0(6) ~h(0+ 5,)[2ds) ",
t teR t
where

Sq = max(’}/q(Kaw)v 6q(K’ OJ))
Fix L > 0 and N. € N such that I C [=£, £] with
|h(s+sn) —v(s)|la < € for n> N, and s€[—L, L]

Then, for each t € I', ones has

(/;H |w(s + sn) — z(s)|’o’tds)% <25, (K,w)e,

which proves that the convergence is uniform on I', by the fact that the last
estimate is independent of ¢t € I'. Proceeding as previously, one can similarly
prove that

1

lim (/tﬂ_1 lw(s) — z(s — sn)|§ds) = 0,

n—-+oo

which implies that I'h € AA:(R; LP((0,1), X,)). O

For the existence of pseudo almost automorphic solution, we make the follow-
ing assertion.

(Hs) f:R— X is cl(u, v)-SP-pseudo almost automorphic of class r.

Theorem 7.5. Assume (Hy), (Hy), (Hg), (Hs) and (Hjs) hold. If p > 1, then
equation(1) has a unique cl(u, v)-SP-pseudo almost automorphic solution of class
r.

Proof. Since f is SP-pseudo almost automorphic function, f has a decomposition
f = f1+f2 where f{) € AA(Rv LP((O, 1)7 XOL)) and fg € S(Rv Lp((()? 1)a X()t)7 1202 T)'
Using Theorem 7.1, Theorem 7.3 and Theorem 7.4, we get the desired result. O
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Our next objective is to show the existence of pseudo almost automorphic

solutions of class r for the following problem
u'(t) = —Au(t) + L(ug) + f(t,ug) fort € R (11)

where f: R x C, — X is a continuous.

For the sequel, we make the following assertion.
For the sequel, we make the following assertion.
(Hg) The instable space U = {0}.

(H7) f: Rx C, — X is uniformly cl(u,v)-SP pseudo compact almost auto-
morphic of class r such that there exists a positive constant L; such that

1t 1) = F(tp2)| < Lyllpr = p2lle, forall t € R and 1,92 € Co.

where Ly satisfies conditions of Theorem 6.11.
Theorem 7.6. Assume (Hg), (H1), (Hg), (Hg), (H4>, (Hg) and (H7) hold. If
Sq(A,w)Lf <1,

where Sy(A,w) = max(vy,(K,w),d,(K,w)), then equation (11) has a unique
cl(p, v)-SP-pseudo compact almost automorphic mild solution of class r.

Proof. Let z be a function in PAA.(R; L”((0,1), X,), 4, v,7), from Theorem
6.14 the function t — z; belongs to PAA.(Cy, p,v,7). Hence Theorem 6.11
implies that the function g(.) := f(.,z.) is in PAA.(R; LP((0,1), X4), f, v, 00).
Since the unstable space U = {0}, then IT* = 0. Consider now the mapping

H:PAA.(R; LP((0,1), Xo), 4, v, 00) = PAA(R; LP((0,1), X)), p, vy 1)
defined for ¢ € R by
t
(Hx)(t) = [ lim / Ut — s)II*(BrXo f(s,x5))ds| (0).
A—+oo — oo

From Theorem 7.1, Theorem 7.3 and Theorem 7.4, we can infer that H maps
PAA.(R; L?((0,1), X), p,v,7) into PAA.(R; LP((0,1), Xo), u,v,7). It suffices
now to show that the operator A has a unique fixed point in PAA.(R; LP((0,1), X4), ft, v, 7).

Let x1,29 € PAA.(R; L?((0,1), X,), i, v, 7). Then we have

t
(Hon(®) -~ Haa®le < [ im [ U= B Xo(F 1) — fs 22|
7/\/ t —w(t—s)
MM|IT°| L C  m. — Ts|ads.

117 f[m (t_s)alah Taslads

IN
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For each n =1,2,3, ..., set
t—n+1 efw(tfs)

Xn(t) =AL o |T1s — X2s]ads,
0 =aL; [ Gl — aalads

where o

A = MM|IT°|
Then for each n = 1,2,3, ..., using a same reasoning as in the proof of Theorem
7.2.

Case:1 n = 1.

—w(t—s)

t
e

Xi(t) < AL o |T1s — Taslads,

1) < f/tl(t_s)akvl( T2s|ads

then, we have

) = St ([T enmea) ([ - eaa)’]

(wg) s
it follows that

t+1 1 t+1 1
swp ([ 1x0Pas)” < @@t ( [ o) - a)kds) "]
t teR t

teER

where

1

VoA w) = 7AL15& (/qw e‘ss_qo‘ds)a
0

(wq) =
t—m+1 1
[Ty

—-n

Case:2n > 2

AL qwn )
Xn(t) < 71{(”(/ e—és—qads)
(wq) q qw(n—1)

Q=

IN
—
D
Q
€
_|_
—
S~—
Q=
~
-
—
~
—
| &
—
)
-
w
|
&
N
o
[olss]
QU
Va)
——
S
| I
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Since
00 t —w(t—s)
e
E Xn(t) = ALf(/ W|mls - 1'25‘04615)7
n=1 >

we deduce that

t+1 1
sup (/ | Hxq(s) — ’sz(s)|gds) "< S (A W) Ly||m1 — 2570
teR \J¢
Thus H is a contractive mapping. We conclude that equation(11), has one and
only one ¢l(u, v)-SP-pseudo almost automorphic solution of class r and this fixed
point satisfies the integral equation

t

u; = lim U (t — s)IT°(BrXof (s, us))ds,

A— o0 P

which ends the proof. O

8. Application

For illustration, we propose to study the existence of solutions for the following
model

19} 0?

0
1
—z(t,x) = ——=2(t G(0)z(t+0,x)df 4 sin | ———— t
8tz( 73:) Oz? Z( ’;) * /_oo ( )Z( + ,x) tsin <2 —|—cost—|—cosx/§t> +g( )
+h<t,—z(t+9,z)) fort € Rand z € [0, 7] (12)
Ox
z(t,0) = z(t,7) =0 for t € R,
where G : [—r,0] into R is a continuous function, h : R x R — R is continuous

and lipschitzian with respect to the second argument and g : R x [0,7] = Ris a
bounded continuous function defined by

0 for t<0

g(t) =
—(t+1)e"t for t>0.

To rewrite equation(12) in the abstract form, we introduce the space X =
L?([0,7];R) vanishing at 0 and 7, equipped with the L? norm that is to say

for all x € X,
™ 1
falle = ([ lato)Pds)”.
w=(, )

Let A: X — X be defined by

{ D(A) = H?(0,7) N H}(0, )
Ay =y".
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Then the spectrum o(A) of A equals to the point spectrum o,(A) and is given
by
o(A) =0,(A) ={-n?: n>1}

and the associated eigenfunctions (e,),>1 are given by

en(s) = \/Zsin(ns), s € [0,m].

Then the operator is computed by

+oo
Ay = Z ng(ya en)eru ye D(A)
n=1
—+oo
For each y € D(A?) = {y € X : Z n(y, en)en € X}, the operator A2 is given
n=1
by
1 ™=
Azy = n(y, en)en, y € D(A).

n=1

Nl=

Lemma 8.1. [15] Ify € D(A
ly'| = |Azy.

), then y is absolutely continuous, y' € X and

It is well known that —A is the generator of a compact analytic semigroup
semigroup (7'(t)):>0 on X which is given by

+oo
T(t)x = Z e*"%(m, en)en, T € X.
n=1

1
Then (Hg) and (Hy) are satified. Here we choose o = 3
We define f : R x C% — X and L : C% — X as follows

[t 9)(x)

. 1 0
= sin (2 I ﬂt) +g(t) + h(t, aw(ﬁ)(mn for z € [0,7] and ¢t € R,

L(p)(z)
0

G(0)p(0)(z)dd for —r <6 <0 and z € [0,7].

-

Let us pose v(t) = z(¢,x). Then equation(12) takes the following abstract form
V'(t) = Av(t) + L(v) + f(t,v;) for t € R. (13)
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Consider the measures p and v where its Radon-Nikodym derivative are respec-
tively p1, p2 : R — R defined by
1 for t>0

pi(t) =
et for t <0.

and
p2(t) = |t| for t e R

ie du(t) = p1(t)dt and dv(t) = pa(t)dt where dt denotes the Lebesgue measure
on R and

w(A) :/Apl(t)dt for v(A) :/Apg(t)dt for AeB.

1
From [3] u, v € M, u, v satisfy Hypothesis (H4) and from [9 ,sin( )
3] p y Hyp (Hy) [9] EpP——
is compact almost automorphic. We also have

0 T
/ etdt—i—/ dt B
_r 0 l—e"+7

lim sup M = lim sup = = lim sup
T—+00 V([_T7 7—]) T—+00 T—+00 T
2 tdt
0

which implies that (Hg) is satisfied.
Let p > 1, since r is given then we have

e ) m (s e

1 +T 0+1 N 1
= — sup Az g(s)||Pds) " dt
p([=T,7]) /0 be[t—r,t] </0 | )l )

1

1 +7 0+1 , 1
= — sup g'(s)||Pds)” dt
e e, () wers)

< g, (L o)

< ([ e

< [TV v
< m /0+r [+ D710y

< Im/om [(Hl)pue_(t_,.)]%dt
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+oo t—r
#/ (t+ 1)2e= 7" dt
1) Jo

Consequently

+7
lim —— / sup
T oo V([_T’ T]) —7 f€[t—rt]
It follows that g € E(R, LP((0,1), X,,), u, v, ), consequently, f is uniformly u-
SP-pseudo almost periodic of class . Moreover, L is a bounded linear operator

from C% to X.

(/:+1 \g(s)|{’lds)%dt = 0.

Let k be the lipschiz constant of h, then for every 1,2 € C% and t > 0, we

have

e = see@l = ([ 20 5re0.0) -l )] )

IN

IN

Ly

sup

s | /0 (o 0.2) ~ Lpaft,)) ]

< Lipller — w2llc,

Consequently, we conclude that f is Lipschitz continuous and ¢l(u, v)-pseudo

almost periodic of class r.
0

Lemma 8.2. [10] If |G(0)|d8 < 1, then the semigroup (U(t))i>o is hyper-

-T

bolic.

For example, let us pose G(0) =
that

/_OT|G(9)|d9 _ /_0 (:22;11)2@9 [

and

[ e~ [ [

6% -1
m for € [—r,0]. Then we can see
6 10 . .
92%—1}4 r2+1<1 if r<1
1
’d@

-1 2 0 _p2
:/ 9712d9+/ &d9:1_L<1if7~21,

—r (074 1) —1

+1)2 r2+1

Lemma 8.3. Under the above assumptions, if Lip(h) is small enough, then
equation(12) has a unique cl(u,v)-SP-pseudo almost automorphic solution v of

class r.

1
2

Nl
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9. Discussion

In this paper we give a new approach to study weighted Stepanov-like pseudo

almost automorphic functions using the measure theory and study the existence
and uniqueness of (u, v)-weighted Stepanov-like pseudo almost automorphic so-
lutions of class r for some partial functional differential equations in a Banach
space. This study uses the a-norm which is more general than a classical norm.
Then, we obtain some more results which are more general than the classical
ones ( see [8] and [17] for example).
However, if we obtain the existence of a unique ¢l(u,v)-SP-pseudo almost au-
tomorphic solution of class r, we cannot say that we have a unique SP-pseudo
almost automorphic solution of class r. The next challenge, is to find under
which assumptions, we have a unique SP-pseudo almost automorphic solution of
class r.
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