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Abstract. In this research, under some specific situations, we precisely

derive new coupled fixed point theorems in a complete b-metric space en-
dowed with the graph. We also use the concept of coupled fixed points

to ensure the solution of differential equations for the system of impulse

effects.
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1. Introduction

Fixed point analysis is most useful tools in applied sciences. It is also appli-
cable to show the existence of the solution of differential or integral equations.
Bhaskar and Lakshmikantham [4] used coupled fixed point to show the existence
of solution to differential equations. This result motivates many scholars to this
subject. Graphs have been used by some authors in recent years to develop
new varieties of fixed point theory. Jachymski’s paper [13] is one of the best
research on fixed point with graphs. For the more detail study in this emerging
field, we can go through the papers [1, 2, 5, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18].
Alfuraidan and Khamsi [4] recently employed some coupled fixed point results
in the directed graph.

Definition 1.1. [3] A map σ : P × P → R+ on the set P is such that

(i): σ(µ, ν) = 0 if and only if µ = ν,
(ii): σ(µ, ν) = σ(ν, µ),
(iii): σ(µ, ν) ≤ j[σ(µ,w) + σ(w, ν)] for all µ, ν, w ∈ P,

where j ≥ 1, then (P, σ) be a b-metric space.
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On P, consider ∆ = {(r, r) : r ∈ P} and on the directed graph G =
(V (G), E(G)), consider that all loops are in E(G) and G has no parallel edges.
A sequence {ti}ri=0 in V(G) with t0 = t, tr = µ and (ti−1, ti) ∈ E(G) for all
i = 1, 2, ..., r is called a path from the vertex t to the vertex µ.
For the vertex µ, let [µ]G = {t ∈ P : there exists path from µ to t}.
If every two vertices of G can be connected by a path, then G is called connected,
i.e., V (G) = [µ]G for all µ ∈ P.
By reversing the direction of each edge of the directed graph G, we obtained a
directed graph, which is denoted by G−1 with V (G−1) = V (G).

We get the undirected graph G̃ by neglecting the directions of the edges in the
directed graph G with V (G̃) = V (G), also

E(G̃) = E(G−1) ∪ E(G).

In this paper, the term (P, σ) refers to a b-metric space with a directed graph
G such that V (G) = P and ∆ ⊆ E(G). Additionally, we consider the product
space P × P with a different graph defined by G, so that

(µ, ı), (ν, t) ∈ E(G) if and only if (µ, ν) ∈ E(G) and (ı, t) ∈ E(G)

for (µ, ν), (ı, t) ∈ P × P.

Example 1.2. Let P = {2, 3, 4, 5, 6} be a set with the σ : P ×P → R+ defined
by

σ(µ, ν) =

 1, µ or ν /∈ {2, 5} and µ ̸= ν,
5, µ, ν ∈ {2, 5} and µ ̸= ν,
0, µ = ν.

It is easy to show that (P, σ) is a b metric space with graph for the coefficient
j = 5

2 > 1.
The graph G = (V (G), E(G)) equipped with V (G) = P and E(G) is represented
by:
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Definition 1.3. [11] A point (µ, ı) ∈ P × P is known as coupled fixed point of
S if

S(µ, ı) = µ and S(ı, µ) = ı.

Definition 1.4. [4] Let the complete metric space (P, σ) endowed with the
direct graph G. The mapping S : P × P → P has the mixed G-monotone
condition if

(µ1, µ2) ∈ E(G) ⇒ (S(µ1, ı), S(µ2, ı)) ∈ E(G),

for each µ1, µ2, ı ∈ P and

(ν1, ν2) ∈ E(G) ⇒ (S(ı, ν2), S(ı, ν1)) ∈ E(G),

for each ν1, ν2, ı ∈ P.

In this research, we use the concept of coupled fixed points on a complete
b-metric space endowed with a graph. Also give sufficient conditions to ensure
the solution of differential equations for the system with impulse effects. The
result given here is an extension of Chandok et.al [11].

2. Main results

Consider, (P, σ,G) represents the complete b-metric space endowed with di-
rected graph G. Also, S : P × P → P has mixed G-monotone property.

Theorem 2.1. On (P, σ,G), assume S is continuous. Let, there exists α, β, γ, δ ∈
[0, 1) with

+∞∑
i=0

si(
(β + γ + δ)

(1− α− γ − δ)
)i < +∞

such that

σ(S(µ, ı), S(l, v)) ≤ α
σ(µ, S(µ, ı))σ(l, S(l, v)

σ(l, v)

+ βσ(µ, l) + γ[σ(µ, S(µ, ı)) + σ(l, S(l, v))]

+ δ[σ(µ, S(l, v)) + σ(l, S(µ, ı))]

(1)

satisfies for all (µ, ı), (l, v) ∈ P × P with ((µ, ı), (l, v)) ∈ E(G). If there exists
µ0, ı0 ∈ P such that ((µ0, ı0), (S(µ0, ı0), S(ı0, µ0))) ∈ E(G), then S admits a
coupled fixed point (µ∗, ı∗) ∈ P × P.

Proof. Let µ1 = S(µ0, ı0) and ı1 = S(ı0, µ0). Then we get

((µ0, ı0), (µ1, ı1) ∈ E(G)).

Hence,

σ(µ2, µ1) = σ(S(µ1, ı1), S(µ0, ı0))

≤ α
σ(µ1, S(µ1, ı1))σ(µ0, S(µ0, ı0))

σ(µ1, µ0)

+ βσ(µ1, µ0) + γ[σ(µ1, S(µ1, ı1)) + σ(µ0, S(µ0, ı0))]
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+ δ[σ(µ1, S(µ0, ı0)) + σ(µ0, S(µ1, ı1))]

σ(µ2, µ1) ≤ α
σ(µ1, µ2)σ(µ0, µ1)

σ(µ1, µ0)

+ βσ(µ1, µ0) + γ[σ(µ1, µ2) + σ(µ0, µ1)]

+ δ[σ(µ1, µ1) + σ(µ0, µ2)].

So,

σ(µ2, µ1) ≤ β + γ + δ

1− α− γ − δ
σ(µ1, µ0).

Likewise ((ı0, µ0), (ı1, µ1) ∈ E(G)), so

σ(ı2, ı1) ≤ (β + γ + δ)

(1− α− γ − δ)
σ(ı1, ı0).

For n = 1, 2, ..., we consider

µn+1 = S(µn, ın) and ın+1 = S(ın, µn).

Considering that S has the mixed G-monotone property on P, we have

((µn, ın), (µn+1, ın+1)) ∈ E(G) and ((ın+1, µn+1), (ın, µn)) ∈ E(G).

Thereafter,

σ(µn+1, µn) ≤ β + γ + δ

1− α− γ − δ
σ(µn, µn−1)

and

σ(ın+1, ın) ≤ β + γ + δ

1− α− γ − δ
σ(ın, ın−1).

Hence, for n ∈ N

σ(µn+1, µn) ≤ (
β + γ + δ

1− α− γ − δ
)n σ(µn, µn−1)

and

σ(ın+1, ın) ≤ (
β + γ + δ

(1− α− γ − δ)
)n σ(ın, ın−1).

For n ∈ N and q ∈ N, we have

σ(µn, µn+q) ≤ sσ(µn, µn+1) + s2σ(µn+1, µn+2) + · · ·+ snσ(µn + q − 1, µn+q)

=
1

sn−1

n+q−1∑
r=n

srσ(µr, µr+1)

≤ 1

sn−1

n+q−1∑
r=n

sr(
β + γ + δ

(1− α− γ − δ)
)rσ(µ0, µ1).

By assumptions, we get

lim
n→+∞

σ(µn, µn+q) = 0.
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By repeating process above, we get

σ(ın, ın+q) ≤ 1

sn−1

n+q−1∑
r=n

sr(
β + γ + δ

(1− α− γ − δ)
)rσ(ı0, ı1),

afterwards

lim
n→+∞

σ(ın, ın+q) = 0.

This gives {µn}+∞
n=1 and {ın}+∞

n=1 are Cauchy. Therefore, by completeness of P
there exists µ∗, ı∗ ∈ P such that

lim
n→+∞

µn = µ∗ and lim
n→+∞

ın = ı∗.

So, by the continuity of S, we have

µ∗ = lim
n→+∞

µn = lim
n→+∞

S(µn−1, ın−1) = S( lim
n→+∞

µn−1, lim
n→+∞

ın−1) = S(µ∗, ı∗),

ı∗ = lim
n→+∞

ın = lim
n→+∞

S(ın−1, µn−1) = S( lim
n→+∞

ın−1, lim
n→+∞

µn−1) = S(ı∗, µ∗),

i.e., S admits (µ∗, ı∗) as a coupled fixed point. □

By introducing following conditions, the continuity of S in Theorem 2.1, can
be removed. Consider (P, σ,G) admits property (Ω); i.e.,

• for any {µn}+∞
n=1 in P such that (µn, µn+1) ∈ E(G) and limn→+∞ µn = µ

then (µn, µ) ∈ E(G),
• for any {µn}+∞

n=1 in P such that (µn+1, µn) ∈ E(G) and limn→+∞ µn = µ
then (µ, µn) ∈ E(G).

Theorem 2.2. consider (P, σ,G) with the condition (Ω), let there exist α, β, γ, δ ∈
[0, 1) with

+∞∑
i=0

si(
β + γ + δ

1− α− γ − δ
)i < +∞

such that

σ(S(µ, ı), S(l, v)) ≤ α
σ(µ, S(µ, ı))σ(l, S(l, v)

σ(l, v)

+ βσ(µ, l) + γ[σ(µ, S(µ, ı)) + σ(l, S(l, v))]

+ δ[σ(µ, S(l, v)) + σ(l, S(µ, ı))],

(2)

satisfies for all (µ, ı), (l, v) ∈ P × P with ((µ, ı), (l, v)) ∈ E(G). If there exists
µ0, ı0 ∈ P such that ((µ0, ı0), (S(µ0, ı0), S(ı0, µ0))) ∈ E(G), then S admits a
coupled fixed point (µ∗, ı∗) ∈ P × P .

Proof. Due to the proof of Theorem 2.1, we prove that only µ∗ = S(µ∗, ı∗) and
ı∗ = S(ı∗, µ∗). Consequently,

lim
n→+∞

µn+1 = lim
n→+∞

S(µn, ın) = µ∗, lim
n→+∞

ın+1 = lim
n→+∞

S(ın, µn) = ı∗
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and (µn, µn+1) ∈ E(G) and (ın, ın+1) ∈ E(G), the condition (Ω) implies that

(µn, µ
∗) ∈ E(G) and (ı∗, ın) ∈ E(G).

So, we have

σ(S(µn, ın), S(µ
∗, ı∗)) ≤ α

σ(µn, S(µn, ın))σ(µ
∗, S(µ∗, ı∗)

σ(µn, µ∗)

+ βσ(µn, µ
∗) + γ[σ(µn, S(µn, ın)) + σ(µ∗, S(µ∗, ı∗))]

+ δ[σ(µn, S(µ
∗, ı∗)) + σ(µ∗, S(µn, ın)).

Likewise, we have

σ(S(ın, µn), S(ı
∗, µ∗)) ≤ α

σ(ın, S(ın, µn))σ(ı
∗, S(ı∗, µ∗)

σ(ın, ı∗)

+ βσ(ın, ı
∗) + γ[σ(ın, S(ın, µn)) + σ(ı∗, S(ı∗, µ∗))]

+ δ[σ(ın, S(ı
∗, µ∗)) + σ(ı∗, S(ın, µn))].

Taking n → +∞, we get

lim
n→+∞

σ(S(µn, ın), S(µ
∗, ı∗)) = 0, and lim

n→+∞
σ(S(ın, µn), S(ı

∗, µ∗)) = 0.

Hence,
lim

n→+∞
µn+1 = S(µ∗, ı∗)), and lim

n→+∞
ın+1 = S(ı∗, µ∗).

So, µ∗ = S(µ∗, ı∗)) and ı∗ = S(ı∗, µ∗) i.e., S admits (ı∗, µ∗) as a coupled fixed
point. □

3. Application

Let us take the following system of impulse-effect differential equations:

ϑ′(η) = g(η, ϑ(η), z(η)), z′(η) = g(η, z(η), ϑ(η)), (3)

ϑ(η+)− ϑ(η−) = I(ϑ(η), z(η)), z(η+)− z(η−) = I(z(η), ϑ(η)), (4)

ϑ(0) = ϑ0, z(0) = z0, (5)

where 0 < η < 1,K = [0, 1], g : K ×ℜ× ℜ → ℜ, I ∈ C(ℜ× ℜ,ℜ)
and the symbols ϑ(η+) = limh→0+ ϑ(η + h) and ϑ(η−) = limh→0+ ϑ(η − h).
To determine a solution for problem (3)-(5), assume a set of piecewise continuous
functions:
PC([0, 1],ℜ) = {z : K → R, z ∈ C(K/{η},ℜ); such that z(η+) and z(η−) exist
and satisfy z(η−) = z(η)}.
Define σ on PC([0, 1]) by

σ(ϑ, z) = (sup
t∈K

|ϑ(t)− z(t)|)2.

Let the subsequent conditions fulfill:
(a) g : K ×ℜ× ℜ → ℜ is continuous,
(b) for all ϑ, z, µ, ν ∈ PC([0, 1]), with ϑ ≤ µ and z ≤ ν, we have

g(t, ϑ(t), z(t)) ≤ g(t, µ(t), ν(t))) and I(ϑ(t), z(t)) ≤ g(µ(t), ν(t)) for all t ∈ [0, 1];
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(c) there exists α, β, γ, δ ∈ [0, 1) with

+∞∑
i=0

2i(
β + γ + δ

1− α− γ − δ
)i < +∞ such that

|g(t, ϑ(t), z(t)) ≤ g(t, µ(t), ν(t))|2

≤ α

2

(|ϑ(t)− g(t, ϑ(t), z(t))|)2.(|µ(t)− g(t, µ(t), ν(t))|)2

(|ϑ(t)− µ(t)|2)

+
γ

2
((|ϑ(t)− g(t, ϑ(t), z(t))|)2 + (|µ(t)− g(t, µ(t), ν(t))|)2)

+
δ

2
((|ϑ(t)− g(t, µ(t), ν(t))|)2 + (|µ(t)− g(t, ϑ(t), z(t))|)2)

and

|I(ϑ(t), z(t))− I(µ(t), ν(t))|2 ≤ β

2
(|ϑ(t)− µ(t)|2)

for all ϑ, z, µ, ν ∈ PC([0, 1]) with ϑ ≤ µ and ν ≤ z.
Now, we find unique solution of problems (3)-(5). These problems are equivalent
to the system:{

ϑ(t) = ϑ0 +
∫ t

0
g(r, ϑ(r), z(r))dr + I(ϑ(η), z(η)), t ∈ K

z(t) = z0 +
∫ t

0
g(r, z(r), ϑ(r))dr + I(z(η), ϑ(η)), t ∈ K.

(6)

Define for t ∈ K, a mapping S : PC(K,ℜ)× PC(K,ℜ) → PC(K,ℜ) such that

S(ϑ(t), z(t)) = ϑ0 +

∫ t

0

g(r, ϑ(r), z(r))dr + I(ϑ(η), z(η)), t ∈ K,

Theorem 3.1. Consider that the assumptions(a)-(c) hold. Let there exists
(µ0, ν0) ∈ PC(K,ℜ)× PC(K,ℜ) such that

µ0(t) ≤ µ0 +

∫ t

0

g(r, µ0(r), ν0(r))dr + I(µ(η), ν(η)),

ν0(t) ≥ ν0 +

∫ t

0

g(r, ν0(r), µ0(r))dr + I(ν(η), µ(η))forall t ∈ K,

consequently, the problems (3)-(5) have a solution.

Proof. We show that the system (6) possesses a solution by proving that the
mapping S has a coupled fixed point. To achieve this, we must prove that S
complies conditions of theorem 2.1 or theorem 2.2.
Assume the Graph G with V (G) = PC([0, 1],ℜ)× PC([0, 1],ℜ), and

E(G) = {(ϑ, z) ∈ PC([0, 1],ℜ)× PC([0, 1],ℜ), ϑ ≤ z},

and consider the product space PC([0, 1],ℜ)× PC([0, 1],ℜ) with

((ϑ, z), (µ, ν)) ∈ E(G) ⇔ (ϑ, µ) ∈ E(G) and (ν, z) ∈ E(G),
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for any (ϑ, z), (µ, ν) ∈ PC([0, 1],ℜ)× PC([0, 1],ℜ).
Now, for each ϑ, z, ϑ1, ϑ2, z1, z2 ∈ PC([0, 1],ℜ) and (ϑ1, ϑ2) ∈ E(G), we have

S(ϑ1, z)(t) = ϑ(t)0 +

∫ t

0

g(r, ϑ1(r), z(r))dr + I(ϑ1(η), z(η)),

≤ ϑ(t)0 +

∫ t

0

g(r, ϑ2(r), z(r))dr + I(ϑ2(η), z(η)),

= S(ϑ2, z)(t).

Thus, (S(ϑ1, z), S(ϑ1, z)) ∈ E(G). Also, if (z1, z2) ∈ E(G) we have

S(ϑ, z2)(t) = ϑ(t)0 +

∫ t

0

g(r, ϑ(r), z2(r))dr + I(ϑ1(η), z2(η)),

≤ ϑ(t)0 +

∫ t

0

g(r, ϑ(r), z1(r))dr + I(ϑ(η), z1(η)),

= S(ϑ, z1)(t),

therefore (S(ϑ, z2), S(ϑ, z1)) ∈ E(G). Since, S(ϑ, z) admits the mixed G- mono-
tone property and suppose (ϑ, z), (µ, ν) ∈ PC([0, 1],ℜ) × PC([0, 1],ℜ) such
that(ϑ, z), (µ, ν) ∈ E(G) then

|S(ϑ, z)(t)− S(µ, ν)(t)|2

= |
∫ t

0

g(r, ϑ(r), z(r))dr + I(ϑ(η), z(η))

−
∫ t

0

g(r, µ(r), ν(r))dr − I(µ(η), ν(η))|2

≤ 2

∫ t

0

|g(r, ϑ(r), z(r))− g(r, µ(r), ν(r))|2dr

+ 2|I(ϑ(η), z(η))− I(µ(η), ν(η))|2

≤
∫ t

0

α
(|ϑ(r)− g(r, ϑ(r), z(r))|)2.(|µ(r)− g(r, µ(r), ν(r))|)2

(|ϑ(r)− µ(r)|2)
+ γ((|ϑ(r)− g(r, ϑ(r), z(r))|)2 + (|µ(r)− g(r, µ(r), ν(r))|)2)
+ δ((|ϑ(r)− g(r, µ(r), ν(r))|)2 + (|µ(t)− g(r, ϑ(r), z(r))|)2)
+ β(|ϑ(t)− µ(t)|2).

Hence,

σ(S(ϑ, z), S(µ, ν)) ≤ α
σ(ϑ, S(ϑ, z))σ(µ, S(µ, ν)

σ(ϑ, µ)

+ βσ(ϑ, µ) + γ[σ(ϑ, S(ϑ, z)) + σ(µ, S(µ, ν))]

+ δ[σ(ϑ, S(µ, ν)) + σ(µ, S(ϑ, z))].

Now, by assumptions we can conclude that

((µ0, ν0), (S(µ0, ν0), S(ν0, µ0))) ∈ E(G).
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Since, S is continuous map and (P, σ,G) has the condition (Ω), which proves
that all conditions of Theorem 2.1 and 2.2 are fulfill. Therefore, S possesses a
coupled fixed point . □
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