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ON A VARIANT OF VERTEX EDGE DOMINATION

S.V. SIVA RAMA RAJU

Abstract. A new variant of vertex edge domination, namely semi total

vertex edge domination has been introduced in the present paper. A subset
S of the vertex set V of a graph G is said to be a semi total vertex edge

dominating set(stved - set), if it is a vertex edge dominating set of G and

each vertex in S is within a distance two of another vertex in S. An stved-
set of G having minimum cardinality is said to be an γstve(G)−set and its

cardinality is denoted by γstve(G). Bounds for γstve(G) − set have been

given in terms of various graph theoretic parameters and graphs attaining
the bounds have been characterized. In particular, bounds for trees have

been obtained and extremal trees have been characterized.
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1. Introduction & Preliminaries

A graph G consists of a finite non empty set V of p vertices together with a set
E of q edges joining pairs of distinct vertices in V . By the open neighbourhood
of a vertex v of G, we mean the set NG(v) = {u ∈ V : uv ∈ E}. The closed
neighbourhood of a vertex v of G, NG[v] = {u ∈ V : uv ∈ E} ∪ {v}. The degree
dG(v) of a vertex v in a graph G is the number of edges of G incident with
v. We denote by δ(G), ∆(G) the minimum, maximum degrees of the vertices
of G, respectively. The distance between two vertices u and v in G, denoted
by dG(u, v) is the length of a shortest u − v path in G. The eccentricity of a
vertex v in a graph G, denoted by e(v), is the maximum of the distances from
v to the remaining vertices of G. The radius of a graph G, denoted by r(G),
is the minimum of the eccentricities of the vertices in G. The diameter of a
graph G, denoted by diam(G), is the maximum of eccentricities of the vertices
in G. A vertex of minimum eccentricity is called a central vertex of G and the
set of all central vertices of G, denoted by C(G), is called the center of G. The
eccentricity of the center of G, denoted by r̂(G), is the maximum distance from
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the center to the vertices not in the center, where the distance from a vertex to
a set is the smallest distance from the vertex to any of the vertices in the set. A
cut - vertex in a graph G is a vertex whose deletion from G increases the number
of components in the resultant graph. A leaf is a vertex of degree one, while a
support vertex is a vertex adjacent to a leaf. Finally, support vertex is said to
be strong if it is adjacent to at least two leaves, else it is said to be weak.

A set S(⊆ V ) is called a dominating set for G, provided each vertex of V −S
is adjacent to a member of S. The domination number of G, denoted by γ(G), is
the cardinality of the smallest dominating set in G. For a comprehensive survey
of domination in graphs, refer[8].

Suppose S ⊆ V . The subgraph weakly induced by S is the graph
< S >w= (N [S], E ∩ (S×N [S])). A set S is a weakly connected dominating set
of G, if S is a dominating set and < S >w is connected. The weakly - connected
domination number of G, denoted by γw(G), is the minimum cardinality of the
weakly connected dominating set for G[4].

A subset S of the vertex set V is said to be a vertex edge dominating set of
the graph G if for each edge uv in G there is a vertex w in S such that w ∈ {u, v}
or w dominates at least one of u, v. The vertex edge domination number γve(G)
is the minimum cardinality of a vertex edge dominating set of G. Vertex edge
domination in graphs was introduced in [6], and further studied in [7].

Wayne Goddard., et al[9], introduced a variant of vertex - vertex domination,
namely semi total domination as follows. A set S of vertices in a graph G without
isolated vertices is said to be semi total dominating set, if S is a dominating set
and each vertex in S is within a distance two of another vertex in S. The semi
total domination number of G, denoted by γt2(G), is the minimum cardinality
of a semi total dominating set of G[9].

In [5], a new type of graphs, called semi complete graphs, are introduced as
follows. A connected graph G is said to be semi complete, if any two different
vertices in G have a common neighbour.

Analogous to semi total domination in vertex - vertex domination, we intro-
duce a new variant of vertex - edge domination, namely semi total vertex edge
domination as follows. A vertex edge dominating set S(⊆ V ) is said to be semi
total vertex edge dominating set of G, if S is a vertex edge dominating set for G
and each vertex in S is within a distance 2 from another vertex in S. The semi
total vertex edge domination number of G, denoted by γstve(G), is the minimum
cardinality of a semi total vertex edge dominating set of G. A semi total vertex
edge dominating set of minimum cardinality is said to be a γstve(G)− set.

In the present paper, we give necessary and sufficient conditions for a stved -
set of G to be a minimal stved - set. Bounds for this variant are given in terms
of various other graph theoretic parameters.

B. Krishna Kumari., et al. [2], established bounds for the vertex edge domi-
nation number of trees. For every tree of order p ≥ 3 with l leaves and s support
vertices, p−s−l+3

4 ≤ γve(G) ≤ p
3 . They also characterized the extremal trees. We
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prove that for any tree of order p ≥ 6, p−s−l+3
3 ≤ γstve(G) and also characterize

the extremal trees.
All graphs considered in this paper are simple, finite, undirected and con-

nected with order p ≥ 2. For all graph theoretic terminology not defined here,
the reader is referred to [1] and [8].

2. Main results

Now, we give necessary and sufficient condition for an stved - set to be mini-
mal.

Theorem 2.1. A semi total vertex edge dominating set S of G is minimal if
and only if for each u ∈ S, one of the following conditions hold:

(1) for some v in S, there is no w ∈ S − {u, v} such that d(v, w) ≤ 2.
(2) there is an edge v1v2 in G such that, (N [v1]

⋃
N [v2])

⋂
S = {u}.

Proof. The proof is straightforward. □

Note: For a graph G, we have γve(G) ≤ γstve(G).
Now, we give the semi total vertex edge domination numbers of some standard

graphs.

Proposition 2.2. (1) For a path Pn(n ≥ 2),

γstve(Pn) =


2, 2 ≤ n < 7

2m, n = 7m

2m+ 1, n = 7m+ 1, 7m+ 2

2m+ 2, n = 7m+ 3, 7m+ 4, 7m+ 5, 7m+ 6

(2) For a cycle Cn(n ≥ 3),

γstve(Cn) =


2, 3 < n ≤ 6

2m, n = 6m(m ≥ 2)

2m+ 1, n = 6m+ 1, 6m+ 2

2m+ 2, n = 6m+ 3, 6m+ 4, 6m+ 5

(3) γstve(Sn) = 2.
(4) γstve(Km,n) = 2.
(5) γstve(Kn) = 2, n ≥ 2.

Proposition 2.3. For a graph G with atleast two vertices, 2 ≤ γstve(G) ≤ p.
Also, γstve(G) = p if and only if G = K2.

Theorem 2.4. γstve(G) = p− 1 if and only if G = K3 or G = P3.

Proof. Assume that γstve(G) = p− 1.
Suppose that p ≥ 4. Let V = {v1, v2, ..., vp−1, vp} be the vertex set of G. If
the graph G has a pendant edge, say vivj , then it can be easily verified that
V − {vi, vj} is an stved - set for G. If the graph does not have pendant edges,
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then in this case V − {vi, vj} is an stved - set for any pair of adjacent vertices
viandvj . In either case, G has an stved-set of cardinality atmost p − 2. This
implies, γstve(G) ≤ p − 2, a contradiction to our assumption. By the above
proposition 2.3 p ̸= 2. Hence, G = K3 or G = P3. The converse part is
clear. □

Theorem 2.5. For a graph G, γstve(G) = p− 2 if and only if p = 4.

Proof. Assume that γstve(G) = p− 2.

Suppose that p ≥ 5. Form a spanning tree G
′
from G.

Let V1 and V2 be the partite sets of G
′
. If |V1| = 1, then V1

⋃
{v}v∈V2

is

an stved - set of G
′
of cardinality 2 = γstve(G

′
) = γstve(G) < p − 2 which is a

contradiction to our assumption. Hence min{|V1|, |V2|} ≥ 2.

Observe that V1 or V2 is an stved-set of G
′
. In other words, V −V1 or V −V2

is an stved-set of G
′
. If one of V − V1 or V − V2 is of cardinality 2, then

γstve(G) = 2 < p− 2,

a contradiction. Thus,

min{V − V1, V − V2} ≥ 3

This implies that γstve(G) ≤ p− 3 < p− 2, again a contradiction. So, p ≤ 4. By
theorem 2.4, p = 4.

Assume that the converse is true.
Let G be a graph with four vertices and G

′
be a spanning tree of G. Since

any pair of distinct vertices in G
′
forms an stved-set of G

′
,

γstve(G
′
) = γstve(G) = 2 = p− 2

.
Hence the proof.

□

Theorem 2.6. If ∆(G) ≥ p− 3, then γstve(G) = 2.

Proof. Suppose ∆(G) = p− 3.
Let d(v) = p − 3 and {v1, v2, v3, ..., vp−3} be the neighbours of v. Then, V =
{v}

⋃
{v1, v2, v3, ..., vp−3}

⋃
{vp−2, vp−1}.

Case:1 Suppose vp−1, vp−2 are adjacent. Without loss of generality. assume
that < vp−3vp−2vp−1 > is a path in G. Then, clearly {v, vp−3} is a stved - set
for G.
Case:2 Suppose {vp−1, vp−2} are not adjacent. Clearly, each vi, i ∈ {p−1, p−2}
is adjacent to at least one vertex in G. Let vp−1vi, vp−2vj are edges in G for
some 1 ≤ i, j ≤ p− 3. Without loss of generality assume that i = p− 3. Then,
{v, vp−3} is a stved - set for G. The proof is trivial for ∆(G) ≥ p− 2. □

Theorem 2.7. If δ(G) ≥ 2, d(G) ≤ 2, then γstve(G) ≤ δ(G).
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Proof. Suppose that δ(G) = d(v), for some v in G. By the hypothesis N(v)
forms an stved - set for G. Hence,

γstve(G) ≤ δ(G).

. □

Remark 2.1. Since for a semi complete graph G[5], d(G) ≤ 2, δ(G) ≥ 2, by the
above theorem, γstve(G) ≤ δ(G).

Theorem 2.8. For a graph G,

γstve(G) ≥
⌈

3q

6(∆− 1)
2
+ 1

⌉
.

Proof. Let S be an stved - set for G. For edge uv in G, define f : E → [0, 1] by

f(uv) =
1

l(u) +m(v)
,

where

l(u) = |N [u] ∩ S|,m(v) = |N [v] ∩ S|
Let v ∈ S. For S is an stved - set of G, there is atleast one edge, av, in
< N [v] > that is dominated by a vertex of S different from v. So,
f(av) ≤ 1

3 . Then,∑
vx∈<N [v]>

f(vx) =
∑

vx∈<N [v]>−{va}

f(vx) + f(va)

≤
∑

vx∈<N [v]>−{va}

dG(vx) +
1

3

=
∑

vx∈<N [v]>−{va}

[dG(v) + dG(x)− 2] +
1

3

≤ 2(∆− 1)
2
+

1

3
.

Hence, each vertex in S dominates atmost [6(∆− 1)
2
+ 1]/3 edges in G. So, S

dominates atmost [6|S|(∆− 1)
2
+ 1]/3 edges in G. This implies,

q ≤ [6|S|(∆− 1)
2
+ 1]/3.

Hence the result. □

Note: The bound is sharp, as it is attained in the case of C4.

Theorem 2.9. For a graph G of order p ≥ 4, γstve(G) ≤ p
2 .

Proof. Assume that S is weakly connected dominating set for G. Since every
edge in < S >w has atleast one end point is S and < S >w is the union of the
closed stars at the vertices in S, any edge in G lies on a star centred on a vertex
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in S or has the neighbors of vertices(vertex) in S as its end points. This implies,
S is a stved - set of G. Hence by Proposition 13.[4] the result holds. □

Note: The bound is sharp, as it is attained in the case of P4.

Theorem 2.10. If G is a graph with p ≥ 4,then γstve(G) = p
2 if and only if G

has a spanning subgraph isomorphic to P4 or K1,3.

Proof. Assume that γstve(G) = p
2 . Suppose d(G) ≥ 4. Form a spanning tree G

′

of G. Let S be a weakly connected dominating set for G
′
. G

′′
be the resultant

tree obtained by removing all the pendant vertices from G
′
. If S is not a weakly

connected dominating set for G
′′
, then atleast one of the pendant vertices is the

unique vertex within a distance 2 to a vertex in S(say v). This implies, that

there is an edge in G
′′
which is not a member of < S >w. So, S is not a weakly

connected dominating set for G
′
, a contradiction. Thus, S is a weakly connected

dominating set for G
′′
. Clearly,

γw(G
′
) ≤ p− l

2
<

p

2

where l is the number of pendant vertices in G
′
. Since G

′
is a spanning tree of

G, γstve(G) < p
2 , a contradiction to our assumption that γstve(G) = p

2 . Hence,
d(G) ≤ 3.

If d(G) = 3 or d(G) = 2 and p = 2n, n ≥ 3, by using the construction as
above, we get a contradiction to our assumption. Also, if d(G) = 3 and n = 2,
G = P4.

Suppose d(G) = 2, n = 2. Then, from any vertex in G all the remaining ver-
tices are at a distance atmost 2. Clearly, G has a spanning subgraph isomorphic
to K1,3.

Hence the result. □

Theorem 2.11. For every connected graph G of diameter atleast 3, there is a
γstve(G)− set without leaves.

Proof. The proof follows from the fact that, if any leaf is a member of a γstve(G)−
set, then it can be replaced by the vertex adjacent to it or by a non leaf vertex
adjacent to its support vertex. □

Theorem 2.12. For every connected graph G of diameter atleast 5, there is a
γstve(G)− set without leaves and support vertices.

Proof. The proof follows from the fact that, if any leaf or support vertex is
a member of a γstve(G) − set, then it can be replaced by the non leaf vertex
adjacent to the support vertex. □

In order to characterize the trees T for which γstve(T ) = (p−s−l+3)/3(where
p, s, l are the number of vertices, support vertices, leaves respectively), we define
a family T of trees to consist of all trees T that can be obtained from a sequence
T1, T2, ..., Tk(k ≥ 1) such that T1 =< v1v2v3v4v5v6v7 >. If T = Ti(i ≥ 1), then
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Ti+1 can be obtained recursively from Ti from one of the following operations.
Let A(T1) = {v3, v5} and H be a path P6 =< v8v9v10v11v12v13 > with A(H) =
{v9, v11}.

• Operation O1 : Attach a vertex by adding an edge to any support vertex
of Tk. Let A(Ti+1) = A(Ti).

• Operation O2 : Attach a path P2 by joining an edge from any vertex of
P2 to a vertex of Tk, which is not a leaf and is adjacent to a support
vertex. Let A(Ti+1) = A(Ti).

• Operation O3 : Attach a copy of H by joining an edge from one of its
leaves to a leaf of Tk adjacent to a weak support vertex. Let A(Ti+1) =
A(Ti) ∪A(H).

• Operation O4 : Attach a path P2 by joining an edge from a vertex in P2

to a vertex of A(H). Let A(Ti+1) = A(Ti) ∪A(H).

Now, we prove that for every tree T of the family T , we have γstve(T ) =
(p− s− l + 3)/3.

Theorem 2.13. If T ∈ T , then

γstve(T ) =
p− s− l + 3

3
.

Proof. We use the terminology mentioned in the construction of the family of
trees, T . To show that γstve(T ) = (p− s− l+ 3)/3 for T ∈ T , we use induction
on the number of operations k performed in the construction of T . The property
is true for T1 = P7. Suppose that the property is true for all trees constructed
with k − 1 operations. Let T = Tk with k ≥ 2. S be a γsrve(G) − set and

T
′
= Tk−1. Assume that T

′
has p

′
vertices, l

′
leaves and s

′
support vertices.

If T is obtained from T
′
by using the operation O1, then γstve(T

′
) = γstve(T ),

p = p
′
+1, s = s

′
, l = l

′
+1. By induction on T

′
, A(T

′
) = A(T ) is a γstve(T )−set

of cardinality (p− s− l + 3)/3.

If T is obtained by using the operation O2, then γstve(T
′
) = γstve(T ), p =

p
′
+ 2, s = s

′
+ 1, l = l

′
+ 1. Again, by using induction on T

′
, A(T

′
) = A(T ) is

a γstve(T )− set of cardinality (p− s− l + 3)/3.

If T is obtained from T
′
by using the operation O3, then γstve(T

′
) = γstve(T ),

p = p
′
+6, s = s

′
, l = l

′
. Assume that a copy of H is added to a leaf adjacent to

a weak support vertex in T
′
. Since A(T ) = A(T

′
) ∪ {v9, v11} is a (unique)

stved - set of G, we have γstve(T ) = γstve(T
′
) + 2. Also, it can be easily

observed that S
′
= S − {v9, v11} is a (unique) stved - set of T

′
. This implies,

γstve(T
′
) ≤ γstve(T )− 2. It follows that γstve(T ) = γstve(T

′
) + 2 and A(T ) is a

γstve(T ) − set. By induction on T
′
, it can be easily checked that cardinality of

A(T ) is (p− s− l)/3.

Suppose that T is obtained from T
′
by using the operationO4. If T is obtained

from T
′
by joining an edge from a vertex in P2 to a vertex in A(H), then it is

easy to check as in the case of T is obtained from T
′
by using the operation O2.

□
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Theorem 2.14. If T is a nontrivial tree of order p with l leaves and s support
vertices, then

γstve(T ) ≥
p− s− l + 3

3
with equality if and only if T ∈ T .

Proof. If d(T ) ≤ 5, then (p−s− l+3)/3 < 2 = γstve(T ). Assume that d(T ) ≥ 6.
Thus the order p of the tree is atleast 7. Now, we obtain the result by using
induction on the order p. Assume that the theorem is true for every tree of order
2 ≤ p

′
< p having l

′
pendant vertices and s

′
support vertices.

First assume that some support vertex of T , say x, is strong. Let y be the leaf
adjacent to x. Let T

′
= T − {y}. Then by Theorem 2.11., we have γstve(T ) =

γstve(T
′
), p

′
= p − 1, s

′
= s, l

′
= l − 1. By using inductive hypothesis on T

′
,

we have γstve(T
′
) ≥ (p

′ − s
′ − l

′
+ 3)/3. This implies, γstve(T ) = γstve(T

′
) ≥

(p
′ − l

′ − s
′
+ 3)/3 = (p − l − s + 3)/3. Further if γstve(T ) = (p − l − s + 3)/3,

then obviously γstve(T
′
) = (p

′ − l
′ − s

′
+ 3)/3 and T

′ ∈ T . The tree T can be

obtained by adding a leaf to a support vertex of T
′
. Thus T is obtained from

T
′
by using operation O1. Henceforth, assume that every support vertex of T is

weak.
Let us assume that < v1v2v3v4v5...vn−1vn > be a diammetral path in T .

Since d(T ) ≥ 6, it follows that n ≥ 7. Let us root the tree at v1. By Tx, we
mean the subtree induced by x and its descendents in the rooted tree T .

Assume that some child of v3, say v, is a leaf. Let T
′
= T −{v}. By Theorem

2.11., it follows that γstve(T ) = γstve(T
′
). Also, we have p

′
= p − 1, l

′
=

l − 1, s
′
= s − 1. By using induction hypothesis on T

′
, we have γstve(T ) =

γstve(T
′
) ≥ (p

′ − l
′ − s

′
+3)/3 = (p− l− s+3)/3. Furthermore, as in the above

case observe that T is obtained from T
′
by using the operation O1.

Now assume that among the children of v3, there is a support vertex, say v,
other than v2. Let T

′
= T − Tv2 . We have p

′
= p − 2, l

′
= l − 1, s

′
= s − 1.

We get γstve(T ) ≥ γstve(T
′
) ≥ (p

′ − l
′ − s

′
+ 3)/3 = (p − s − l + 3)/3. If

γstve(T ) = (p− s− l + 3)/3, then obviously γstve(T
′
) = (p

′ − s
′ − l

′
+ 3)/3. By

the induction hypothesis, T
′ ∈ T . The tree T can be obtained by adding a path

P2 to a vertex of T
′
adjacent to a support vertex of T

′
. Thus T is obtained

from T
′
by operation O2. If among the children of v3, there are support vertices

different from v, v2, then also T can be obtained from T
′
by operation O2.

Now assume that dT (v3) = 2. Assume that dT (v4) ≥ 3. Assume that some

child of v4, say v, is a leaf. Let T
′
= T − v. Then, p

′
= p − 1, s

′
= s − 1 and

l
′
= l−1. This implies, γstve(T ) = γstve(T

′
) ≥ (p

′−l
′−s

′
+3)/3 = (p−l−s+3)/3.

Now assume that no child of v4 is a leaf. Observe that v3 is a member of
stved - set of the tree T .

case 1.: Suppose that v4 is adjacent to paths P2 and P3, where P2, P3

are not paths on the diammetral path. Then, observe that v4, u, where
u is a vertex adjacent to v4 on the path P3, are members of stved -
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set T . If S is an stved - set of T , then S − {v3} is an stved - set of

T
′
= T − Tv3 . Let p

′
= p − 3, l

′
= l − 1, s

′
= s − 1. This implies,

γstve(T ) ≥ γstve(T
′
) + 1 ≥ (p

′ − l
′ − s

′
+ 3)/3 + 1 > (p− l − s+ 3)/3.

case 2.: Suppose that v4 is adjacent to k paths of length one, where k ≥ 1
and not adjacent to any path of length 2. Observe that v4 is a member
of stved - set of T .
subcase 1.: Suppose v3 is the unique vertex within a distance 2 from

v4. Observe that any stved - set consists v3, v4. Consider T
′
=

T − Tv4 . Clearly p
′
= p − 2dT (v4), l

′
= l − dT (v4) + 2, s

′
= s −

dT (v4) + 2. Also, S − {v3, v4} is an stved - set of T
′
. We get

γstve(T ) ≥ γstve(T
′
)+2 ≥ (p

′ − l
′ −s

′
+3)/3+2 > (p− l−s+3)/3.

subcase 2.: Suppose v4 has a vertex within distance 2, different from
v3. Observe that any stved - set contains v3. Consider T

′
= T−Tv3 .

Clearly p
′
= p− 3, l

′
= l− 1, s

′
= s− 1. Also, S−{v3} is an stved -

set of T
′
. We get γstve(T ) ≥ γstve(T

′
)+1 ≥ (p

′ − l
′ −s

′
+3)/3+2 >

(p− l − s+ 3)/3.
case 3.: Suppose that v4 is adjacent to k paths of length two, where k ≥ 1

and not adjacent to any path of length two. Observe that v3 is a member
of stved - set of T .
subcase 1.: Suppose k ≥ 2. Consider T

′
= T − Tv3

. Clearly p
′
=

p−3, l
′
= l−1, s

′
= s−1. Also, S−{v3} is an stved - set of T

′
. We

get γstve(T ) ≥ γstve(T
′
)+1 ≥ (p

′−l
′−s

′
+3)/3+2 > (p−l−s+3)/3.

Suppose v4 is adjacent to exactly two paths of length 2, which are
not vertex disjoint. Observe that v3, u(where u is a vertex on the
path of length 2, adjacent to v4) are members an stved - set of T , say
S. Suppose no other vertex in S is within a distance two from v3 or
u(where u is a vertex on the path of length 2, adjacent to v4). Let

T
′
= T−Tv4 . Then p

′
= p−9, s

′
= s−3, l

′
= l−3. As in the earlier

case, we get, γstve(T ) ≥ γstve(T
′
) + 2 ≥ (p

′ − l
′ − s

′
+ 3)/3 + 2 >

(p − l − s + 3)/3. If p
′
= 0, then observe that T is obtained from

T
′
= P7 by joining a path P2 to a non leaf vertex adjacent to a

support vertex of P7. This implies T is obtained from T
′
by the

operation O2.
subcase 2.: Suppose k = 1.

If v4 is a member of an stved - set, say S, of T , then by considering
T

′
= T − Tv3 , we get, γstve(T ) ≥ γstve(T

′
) + 1 ≥ (p

′ − l
′ − s

′
+

3)/3 + 2 > (p− l − s+ 3)/3.

Suppose v4 is not a member of an stved - set, say S, of T . If
no other vertex in S is within a distance two from v3 or u(where
u is a vertex on the path of length 2, adjacent to v4). Then by
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considering T
′
= T − Tv4

, we get, γstve(T ) ≥ γstve(T
′
) + 2 ≥

(p
′ − l

′ − s
′
+ 3)/3 + 2 > (p− l − s+ 3)/3.

Now assume that dT (v4) = 2. Assume that dT (v5) ≥ 3. Assume that some

child of v5, say v, is a leaf. Let T
′
= T − v. Then, p

′
= p − 1, s

′
= s − 1 and

l
′
= l−1. This implies, γstve(T ) = γstve(T

′
) ≥ (p

′−l
′−s

′
+3)/3 = (p−l−s+3)/3.

Now assume that no child of v5 is a leaf. Observe that v3, v5 are members of
any stved - set, say S, of the tree T . By considering various possibilities like in
the earlier cases, we get, γstve(T ) ≥ γstve(T

′
) + 1 ≥ (p

′ − l
′ − s

′
+ 3)/3 + 2 >

(p−l−s+3)/3 or γstve(T ) ≥ γstve(T
′
)+2 ≥ (p

′−l
′−s

′
+3)/3+2 > (p−l−s+3)/3.

Continuing like this, assume that dT (v6) = 2 and dT (v7) ≥ 3. Observe that
any stved - set, say S, of the tree T contains the vertices v3, v5, v7, also any
path(outside the considered diammetral path) adjacent to v7 will be of length
atmost 5.

If v7 is adjacent to path lengths of all possibilities, then consider T
′
= T−Tv5 .

Clearly p
′
= p − 5, l

′
= l − 1, s

′
= s − 1. We get, γstve(T ) ≥ γstve(T

′
) + 2 ≥

(p
′ − l

′ − s
′
+ 3)/3 + 2 > (p− l − s+ 3)/3.

If v7 is adjacent to paths of length one or three and not to adjacent paths
of other possible lengths, then by considering T

′
= T − Tv3 , we get γstve(T ) ≥

γstve(T
′
) + 1 ≥ (p

′ −m
′ − s

′
+ 3)/3 + 2 > (p−m− s+ 3)/3.

Suppose v7 is adjacent to a path of length 5, say < uvwxyz >. Let T
′
=

T − Tv5 . Clearly p
′
= p− 5, l

′
= l− 1, s

′
= s− 1. If p

′
= 8, observe that v, x are

also members of S and T is obtained from T
′
by adding a path P6 to a leaf of

T
′
. Hence T is obtained from T

′
by using the operation O3, also T ∈ T .

Suppose p
′
= 10. Observe that v, x are also members of S. Consider the case

in which there is a path of length one adjacent to x or v. Then, in this case T
is obtained from T

′
by using the operation O4. □

Theorem 2.15. Let S be a minimum stved - set of G. Then, there is a spanning
tree T of G such that S is an stved - set of T .

Proof. If G is a tree, then the result is trivial. Otherwise, consider a cycle C in
G. Remove an edge from G as follows.

Case:1: C has an edge uv, where u, v /∈ V − S. Then, it can be easily
observed that S is an stved− set of G− {uv}.

Case:2: C has an edge uv, where u ∈ S and v /∈ S. Suppose that u is
a unique vertex, vertex edge dominating vw(w ̸= u). Then, there is an
edge vx(x ̸= u) in C, such that x /∈ S. Hence, Case:1 applies.

Case:3: C has an edge uv, where u, v ∈ S. Then, it can be easily observed
that S is an stved− set of G− {uv}, for any edge uv in C.

Continue this process, until we obtain a spanning tree T of G. Observe that
γstve(T ) ≤ |S| = γstve(G). □
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Theorem 2.16. For a graph G with x cut - vertices and s support vertices,

γstve(G) ≥ x− s+ 3

3
.

Moreover, this bound is sharp.

Proof. Let S be a γstve(G)− set. Form a spanning tree T of G, as in Theorem
2.15., so that S is an stved - set of T . Let x(T ) denote the number of cut -
vertices of G. Since any cut - vertex of G is also a cut-vertex of T , we have
x(T ) ≥ x. Now, by applying Theorem 2.14. to T , we have

γstve(G) ≥ γstve(T ) ≥
p− l − s+ 3

3
=

x(T )− s+ 3

3
≥ x− s+ 3

3
.

□

Theorem 2.17. For a connected graph G,

⌈
diam(G)

3

⌉
≤ γstve(G).

Proof. Let S be a γstve(G) − set. Any diammetral path in G includes at most
two edges from < N [v] >, for each v ∈ S. Also, since S is a γstve(G)− set, the
diammetral path in G includes at most γstve(G)−2 edges joining the neighbour-
hoods of the vertices in S. Hence, diam(G) ≤ 2γstve(G) + γstve(G) − 2 + 2 =
3γstve(G). This completes the proof. □

Theorem 2.18. For a connected graph G,⌈
2r(G)− 1

4

⌉
≤ γstve(G).

Proof. Let S be the minimum stved - set for G. Form a spanning tree T of
G as in Theorem 2.15. Then, γstve(T ) ≤ γstve(G). Since r(G) ≤ r(T ) and
2r(T )− 1 ≤ diam(T ), by applying Theorem 2.16 to T , the proof follows. □

Theorem 2.19. For a graph G, we have

2

3
r̂ ≤ γstve(G).

Proof. By using the Theorem 2.15. and Theorem 2.17. , the proof follows. □
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