DOI QR코드

DOI QR Code

Design and Performance Evaluation on 2×2 Balanced-Bridge Mach-Zehnder Interferometric Integrated-Optical Biochemical Sensors using SOI Slot Optical Waveguides

SOI 슬롯 광 도파로를 활용한 2×2 Balanced-Bridge Mach-Zehnder 간섭형 집적광학 바이오케미컬 센서 설계 및 성능평가

  • Hongsik Jung (Dept. of Electronic & Electrical Fusion Engineering, College of Science and Technology, Hongik University)
  • 정홍식 (홍익대학교 전자전기융합공학과)
  • Received : 2023.06.22
  • Accepted : 2023.07.05
  • Published : 2023.07.31

Abstract

An integrated-optical biochemical sensor structure that can perform homogeneous and surface sensing using a 2×2 balanced-bridge Mach-Zehnder interference structure based on the optimized SOI slot optical waveguide was described, and its performance and characteristics were evaluated. Equations for the two output optical powers were derived and examined using the transfer matrices of a 3-dB coupler and phase shifter (channel waveguide). The length of the 3-dB coupler was determined such that the two output optical powers were same using these formulas. In homogeneous sensing, the effect of the refractive index of an analyte in the range of 1.33-1.36 on the two output optical power distributions was numerically derived, and the sensitivity was calculated based on each output and the difference between the two outputs, the former and the latter being 7.5796-19.0305 [au/RIU] and 15.2601-38.1351 [au/RIU], respectively. In the case of surface sensing, the sensitivity range of the refractive index of 1.337 based on each of the two outputs was calculated as -2.2490--3.5854 [au/RIU] and 1.2194-3.8012 [au/RIU], and the sensitivity range of 4.8048-7.0694 [au/RIU] was confirmed based on the difference between the two outputs.

Keywords

Acknowledgement

이 논문은 한국연구재단 이공학개인기초연구 (2018-R1D1A1B07049908) 연구비 지원으로 수행되었습니다.

References

  1. X. Fan, L. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review", Anal. Chemi. Acta., Vol. 620, No. 1-2, pp. 8-26, 2008.  https://doi.org/10.1016/j.aca.2008.05.022
  2. R. Chandrasekar, Z. J. Lapin, A. S. Nichols, R. M. Braun, and A. W. Fountain, "Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of the-art and future outlooks", Opt. Eng., Vol. 58, No. 2, pp. 0220901(1)-022090(12), 2019.  https://doi.org/10.1117/1.OE.58.2.020901
  3. F. Prieto, B, Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications", Nanotechnol., Vol. 14, No. 8, pp, 907-912, 2003.  https://doi.org/10.1088/0957-4484/14/8/312
  4. P. Munoz, G. Mico, L. A. Bru, D. Pastor, D. Perez, J. D. Domenech, J. Ferandez, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirere, R. Mas, and C. Dominguez, "Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications", Sens., Vol. 17, pp. 2088(1)-2088(25), 2017.  https://doi.org/10.3390/s17092088
  5. K. Worhoff, R. G. Heideman, A. Leinse, and M. Hoekman, "TriPlex: a versatile dielectric photonic platform", Adv. Opt. Tech., Vol. 4, No. 2, pp. 189-207, 2015.  https://doi.org/10.1515/aot-2015-0016
  6. D. L. Blumental, R. Heidman, D. Geuzberoek, A. Leinse, and C. Roeloffzen, "Silicon Nitride in Silicon Photonics", Proc. of IEEE., Vol. 106, USA, pp. 2209-2231, 2018. 
  7. K. Zinoviev, A. B. Gonzalez-Guerrero, C. Dominguez, and L. M. Lechuga, "Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis", J. Lightwave Technol., Vol. 29, No. 13, pp. 1926-1930, 2011.  https://doi.org/10.1109/JLT.2011.2150734
  8. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure", Opt. Lett., Vol. 29, No. 11, pp. 1209-1211, 2004.  https://doi.org/10.1364/OL.29.001209
  9. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonator in silicon-on-insulator-based slot waveguides", Appl. Phys. Lett. Vol. 86, No. 8, pp. 081101(1)-08110(3), 2005.  https://doi.org/10.1063/1.1871360
  10. N. N. Feng, J. Michel, and L. C. Kimerling, "Optical Field Concentration in Low-Index Waveguides", IEEE J. Quant. Elec., Vol. 42, No. 9, pp. 883-888, 2006.  https://doi.org/10.1109/JQE.2006.880061
  11. P. Steglich, "Silicon-On-Insulator Slot Waveguides: Theory and Applications in Electro-Optics and Optical sensing", Emerg. Waveguide Technol., pp. 188-210, 2018. 
  12. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with silicon-organic hybrid slot waveguides", Nat. Photonics., Vol. 3, No. 4, pp. 216-219, 2009.  https://doi.org/10.1038/nphoton.2009.25
  13. M. Roussey, L. Ahmadi, S. Pelisset, M. Hayrinen, A. Bera, V. Kontturi, J. Laukkanen, I. Vartiainen, S. Honkanen, and M. Kuittinen, "Strip-loaded horizontal slot waveguide", Opt. Lett., Vol. 42, No. 2, pp. 211-214, 2017.  https://doi.org/10.1364/OL.42.000211
  14. H. Zengzhi, Y. Zhang, C. Zeng, D. Li, M. S. Nisar, J. Yu, and J. Xia, "High Confinement Factor Ridge Slot Waveguide for Optical Sensing", IEEE Phot. Technol. Lett., Vol. 27, No. 22, pp. 2395-2398, 2015.  https://doi.org/10.1109/LPT.2015.2466595
  15. R. Singh and V. Priye, "Si3N4-SiO2 Based Curve Slot Waveguide for High Confinement Factor and Low Mode Effective Area along with Biosensing Alpplication", Silicon, Vol. 14, No. 3, pp. 859-867, 2021.  https://doi.org/10.1007/s12633-020-00927-y
  16. C. A. Barrios, "Optical Slot-Waveguide Based Biochemical Sensors", Sensors, Vol. 9, No. 6, pp. 4751-4765, 2009.  https://doi.org/10.3390/s90604751
  17. T. Dar, J. Holma, B. M. Azizur Rahman, and M. Rajarajan, "Label-free slot- waveguide biosensor for the detection of DNA hybridization", Appl. Opt., Vol. 51, No. 34, pp. 8195-8202, 2012.  https://doi.org/10.1364/AO.51.008195
  18. E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, "Silicon Photonics Biosensors Using Label-Free Detection", Sensors, Vol. 18, No. 10, pp. 3519(1)-3519(12), 2018.  https://doi.org/10.1109/JSEN.2017.2772700
  19. F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. A. Cammann, "Label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon", Sens. Actuators B, Vol. 44, No. 1-3, pp. 350-355, 1997.  https://doi.org/10.1016/S0925-4005(97)00226-8
  20. Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y.-J. Yoon, G.-Q. Lo, and M. K. Park, "Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide", Sens. Act. B: Chem., Vol. 188, pp. 681-683, 2013.  https://doi.org/10.1016/j.snb.2013.07.053
  21. H. S. Jung, "Study on the Design and Performance of Integrated-Optic Biosensor utilizing the Multimode Interferometer based on Si3N4 Rib-Optical Waveguide and Evanescent-Wave", J. IKEEE, Vol. 24, No. 2, pp. 38-47, 2020. 
  22. X. Li, Z. Zhang, S. Qin, T. Wang, F. Liu, M. Qiu, and Y, Su, "Sensitive label- free and compact biosensor based on concentric silicon-on-insulator microring resonators", Appl. Opt., Vol. 48, No. 25, pp. F90-F94, 2009.  https://doi.org/10.1364/AO.48.000F90
  23. R. Zeng, B. Wang, Z. Bu, B. Ben Niu, and Y. Hua, "Integrated optical E-field sensor based on balanced Mach-Zehnder interferometer", Opt. Eng. Vol. 50, No, 11, p. 114404, 2011. 
  24. H. S. Jung, "An Integrated Photonic Electric-Field Sensor Utilizing a 1×2 YBB Mach-Zehnder Interferometric Modulator with a Titanium-Diffused Lithium Niobate Waveguide and a Diple Patch Antenna", Cryst., Vol. 9, No. 9, pp. 459(1)-459(11), 2019.  https://doi.org/10.3390/cryst9090459
  25. H. S. Jung, "Optimization of vertical SOI slot optical waveguide with confinement factor and sensitivity for integrated-optical biochemical sensors," J. Sens. Sci. Technol. Vol. 30, No. 3, pp. 131-138, 2021.  https://doi.org/10.46670/JSST.2021.30.3.131
  26. Photon Design Ltd., FIMMWAVE v6.6.0, Oxford, United Kingdom, 2018. 
  27. Y. Liu, M. Kong, and Y. Jiang, "Transverse magnetic modes in planar slot waveguides", J. Opti. Soci. B Am., Vol. 32, No.10, pp. 2052-2060, 2015.  https://doi.org/10.1364/JOSAB.32.002052
  28. Y. Jiang, M. Kong, C. Liu, Y. Liu, and Y. Wang, "Transverse electric modes in planar slot waveguides", J. Modern Optics., Vol. 65, No. 1, pp. 111-118, 2018. https://doi.org/10.1080/09500340.2017.1377307