DOI QR코드

DOI QR Code

Modelling of the fire impact on CONSTOR RBMK-1500 cask thermal behavior in the open interim storage site

  • Robertas Poskas (Nuclear Engineering Laboratory, Lithuanian Energy Institute) ;
  • Kestutis Rackaitis (Nuclear Engineering Laboratory, Lithuanian Energy Institute) ;
  • Povilas Poskas (Nuclear Engineering Laboratory, Lithuanian Energy Institute) ;
  • Hussam Jouhara (Heat Pipe and Thermal Management Research Group, College of Engineering, Design and Physical Sciences, Brunel University London)
  • Received : 2022.04.01
  • Accepted : 2023.04.16
  • Published : 2023.07.25

Abstract

Spent nuclear fuel and long-lived radioactive waste must be carefully handled before disposing them off to a geological repository. After the pre-storage period in water pools, spent nuclear fuel is stored in casks, which are widely used for interim storage. Interim storage in casks is very important part in the whole cycle of nuclear energy generation. This paper presents the results of the numerical study that was performed to evaluate the thermal behavior of a metal-concrete CONSTOR RBMK-1500 cask loaded with spent nuclear fuel and placed in an open type interim storage facility which is under fire conditions (steady-state, fire, post-fire). The modelling was performed using the ANSYS Fluent code. Also, a local sensitivity analysis of thermal parameters on temperature variation was performed. The analysis demonstrated that the maximum increase in the fuel load temperatures is about 10 ℃ and 8 ℃ for 30 min 800 ℃ and 60 min 600 ℃ fires respectively. Therefore, during the fire and the post-fire periods, the fuel load temperatures did not exceed the 300 ℃ limiting temperature set for an RBMK SNF cladding for long-term storage. This ensures that fire accident does not cause overheating of fuel rods in a cask.

Keywords

References

  1. M. Wataru, H. Takeda, K. Shirai, T. Saegusa, Thermal hydraulic analysis compared with tests of full-scale concrete casks, Nucl. Eng. Des. 238 (2008) 1213-1219, https://doi.org/10.1016/j.nucengdes.2007.03.036. 
  2. L.E. Herranz, J. Penalva, F. Feria, CFD analysis of a cask for spent fuel dry storage: model fundamentals and sensitivity studies, Ann. Nucl. Ener. 76 (2015) 54-62, https://doi.org/10.1016/j.anucene.2014.09.032. 
  3. Y.S. Jeong, I.C. Bang, Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask, App. Therm. Eng. 96 (2016) 277-285, https://doi.org/10.1016/j.applthermaleng.2015.11.086. 
  4. M.G. El-Samrah, A.F. Tawfic, S.E. Chidiac, Spent nuclear fuel interim dry storage: design requirements, most common methods, and evolution: a review, Ann. Nucl. Energy 160 (2021), 108408, https://doi.org/10.1016/j.anucene.2021.108408. 
  5. S. Alyokhina, A. Kostikov, Unsteady heat exchange at the dry spent nuclear fuel storage, Nucl. Eng. Technol. 49 (2017) 1457-1462, https://doi.org/10.1016/j.net.2017.07.029. 
  6. M. Hanifehzadeh, B. Gencturk, R. Mousavi, A numerical study of spent nuclear fuel dry storage systems under extreme impact loading, Eng. Struct. 161 (2018) 68-81, https://doi.org/10.1016/j.engstruct.2018.01.068. 
  7. IAEA Safety Standards SeriesNo, SSR-6 (Rev.1), Regulations for the safe transport of radioactive, Mat. Specif. Saf. Require. (2018) 165. 
  8. K.S. Bang, S.H. Yu, J.C. Lee, K.S. Seo, W.S. Choi, Experimental assessment on the thermal effects of the neutron shielding and heat-transfer fin of dual purpose casks on open pool fire, Nucl. Eng. Des. 304 (2016) 63-69, https://doi.org/10.1016/j.nucengdes.2016.04.040. 
  9. R.L. Frano, G. Pugliese, G. Forasassi, Thermal analysis of a spent fuel cask in different transport conditions, Energy 36 (2011) 2285-2293, https://doi.org/10.1016/j.energy.2010.01.041. 
  10. Y.S. Tseng, J.R. Wang, F.P. Tsai, Y.H. Cheng, C. Shih, Thermal design investigation of a new tube-type dry-storage system through CFD simulations, Ann. Nucl. Energy 38 (2011) 1088-1097, https://doi.org/10.1016/j.anucene.2011.01.001. 
  11. J. Li, Y.Y. Liu, Thermal modelling of a vertical dry storage cask for used nuclear fuel, Nucl. Eng. Des. 301 (2016) 74-88, https://doi.org/10.1016/j.nucengdes.2016.01.008. 
  12. J. Benavides, G. Jimenez, M. Galban, M. Lloret, Methodology for thermal analysis of spent nuclear fuel dry cask using CFD codes, Ann. Nucl. Energy 133 (2019) 257-274, https://doi.org/10.1016/j.anucene.2019.05.026. 
  13. S.H. Yoo, H.C. No, H.M. Kim, E.H. Lee, Full-scope simulation of a dry storage cask using computational fluid dynamics, Nucl. Eng. Des. 240 (2010) 4111-4122, https://doi.org/10.1016/j.nucengdes.2010.08.009. 
  14. J.M. Creeret, et al., The TN-24P PWR spent fuel storage cask: testing and analysis, in: EPRI NP-5128, PNL-6054, Pacific Northwest Laboratory, 1987. 
  15. R.A. Brewster, E. Baglietto, E. Volpenhein, C.S. Bajwa, CFD analyses of the TN-24p PWR spent fuel storage cask, in: The ASME 2012 Pressure Vessels & Piping Division Conference, 2012, https://doi.org/10.1115/PVP2012-78491. Paper No.PVP2012-78491, Toronto, USA, July 15-17. 
  16. P. Poskas, A. Smaizys, V. Simonis, Radiological and thermal characteristics of CASTOR RBMK-1500 and CONSTOR RBMK-1500 casks for spent nuclear fuel storage at ignalina nuclear power plant, Kerntechnik 71 (2006) 222-227, https://doi.org/10.3139/124.100297. 
  17. R. Poskas, V. Simonis, P. Poskas, A. Sirvydas, Thermal analysis of CASTOR RBMK-1500 casks during long-term storage of spent nuclear fuel, Ann. Nucl. Energy 99 (2017) 40-46, https://doi.org/10.1016/j.anucene.2016.09.031. 
  18. Ye.T. Koyanbayev, M.K. Skakov, D.A. Ganovichev, Ye.A. Martynenko, A.A. Sitnikov, Simulation of the thermal conditions of cask with fuel assemblies of BN-350 reactor for dry storage, Sci. Technol. Nucl. Install. vol. 2019 (2019) Article ID 3045897, 5 pages, doi:10.1155/2019/3045897. 
  19. W.J. Cho, S. Kwon, K.S. Kim, Rock cavern storage of spent fuel, J. Nucl. Fuel Cycle Waste Technol. 13 (2015) 301-313, https://doi.org/10.7733/jnfcwt.2015.13.4.301. 
  20. S.H.A. Latif, M.M. Kandil, A.M. Refaey, S.A. Elnaggar, Simulation of partial and complete loss of flow accidents for GPWR using ATHLET code, Int. J. Thermofluids 11 (2021), 100097, https://doi.org/10.1016/j.ijft.2021.100097. 
  21. B. Almomania, D. Janga, S. Leeb, H.G. Kang, Development of a probabilistic safety assessment framework for an interim dry storage facility subjected to an aircraft crash using best-estimate structural analysis, Nucl. Eng. Technol. 49 (2017) 411-425, https://doi.org/10.1016/j.net.2016.12.013. 
  22. C.S. Bajwa, An Analysis of a Spent Fuel Transportation Cask under Severe Fire Accident Conditions, 2002. Technical Report, https://www.nrc.gov/docs/ML0216/ML021690443.pdf. 
  23. D. Sanyal, P. Goyal, V. Verma, A. Chakraborty, A CFD analysis of thermal behaviour of transportation cask under fire test conditions, Nucl. Eng. Des. 241 (2011) 3178-3189, https://doi.org/10.1016/j.nucengdes.2011.06.017. 
  24. P. Geraldini, A. Lorenzo, Numerical Analysis and Experimental Verification of a Fire Resistant Overpack for Nuclear Waste, Proc. 2016 COMSOL Conference, Munich, Germany, 2016. 
  25. R. Po skas, P. Po skas, K. Ra ckaitis, R. Zujus, A numerical study of thermal behavior of CASTOR RBMK-1500 cask under fire conditions, Nucl. Eng. Des. 376 (2021), 111131, https://doi.org/10.1016/j.nucengdes.2021.111131.
  26. R. Po skas, V. Simonis, H. Jouhara, P. Po skas, Modeling of decay heat removal from CONSTOR RBMK-1500 casks during long-term storage of spent nuclear fuel, Energy 170 (2019) 978-985, https://doi.org/10.1016/j.energy.2018.12.217. 
  27. J.C. Lee, W.S. Choi, K.S. Bang, K.S. Seo, S.Y. Yoo, Thermal-fluid flow analysis and demonstration test of a spent fuel storage system, Nucl. Eng. Des. 239 (2009) 551-558, https://doi.org/10.1016/j.nucengdes.2008.12.015. 
  28. A.V. Vatulin, A.G. Ioltukhovskiy, I.M. Kadarmetov, et al., Validation of dry storage modes for RBMK-1000 spent fuel assembles (SFA) (IAEA-CN-102/39), in: Storage of Spent Fuel from Power Reactors. Proceedings of International Conference, IAEA, Vienna, Austria, 2003, pp. 422-430. 
  29. V.I. Kalinkin, V.G. Kritskij, N.N. Davidenko, et al., Technology of SNF RBMK1500 Transfer from ''Wet" to ''Dry" Storage, JSC Head Institute VNIPIET and JSC Concern Rosenergoatom, St. Petersburg, Russia, 2010. 
  30. J.C. Lee, K.S. Bang, K.S. Seo, H.D. Kim, B.I. Choi, H.Y. Lee, Thermal analysis of a spent fuel storage cask under normal and off-normal conditions, J. Korean Rad. Waste Soc. 2 (2004) 13-22. 
  31. E. Bich, J. Milat, E. Vogel, The viscosity and thermal conductivity of pure monatomic gases from their normal boiling point up to 5000 K in the limit of zero density and at 0.101325 MPa, J. Phys. Chem. Ref. Data 19 (1990) 1289-1305.  https://doi.org/10.1063/1.555846
  32. M.D. Valkeneer, Spent Fuel Management in Belgium, 1995. Proc. of IAEA-NEA Symposium Safety and Engineering Aspects of Spent Fuel Storage. IAEA-SM-335/3. 
  33. D. Dougal, An Introduction to Fire Dynamics, third ed., Wiley., 2011. 
  34. J.Y. Murthy, S.R. Mathur, Finite volume method for radiative heat transfer using unstructured meshes, J. Thermophys. Heat Trans. 12 (1998) 313-321.  https://doi.org/10.2514/2.6363
  35. P.J. Roache, Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech. 29 (1997) 123-160.  https://doi.org/10.1146/annurev.fluid.29.1.123