DOI QR코드

DOI QR Code

Accumulation and distribution of nutrients, radionuclides and metals by roots, stems and leaves of plants

  • Huynh Truc Phuong (Faculty of Physics and Engineering Physics, University of Science) ;
  • Vu Ngoc Ba (Nuclear Technique Laboratory, University of Science) ;
  • Bui Ngoc Thien (Faculty of Physics and Engineering Physics, University of Science) ;
  • Loan Truong Thi Hong (Nuclear Technique Laboratory, University of Science)
  • Received : 2021.11.11
  • Accepted : 2023.03.29
  • Published : 2023.07.25

Abstract

In the process of growth and development, plants not only absorb essential nutritional elements, but also absorb radioactive and non-essential elements from the environment, and their distribution varies in different parts of the plant. In this study, neutron activation analysis and gamma spectrometry were performed on stems, roots, and leaves of vegetables. The results indicate that the accumulation of radionuclides and multi-elements depends on the plant type and plant parts. Activity concentrations of 226Ra and 232Th in plants were accumulated in the following order: Roots > Stems > Leaves. The highest concentrations of 40K and 210Pb were observed in the stems and leaves of plants, respectively. Essential nutrient requirements of plants are in the following order: K > Ca > Mg > Fe > Zn > Mn. Among the nonessential metals, the concentration of Na in the vegetable sample was much greater than those of the other elements. The K/Na ratio in the plant depends on the type of plant and the translocation within the plant.

Keywords

Acknowledgement

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number VL2021-18-02.

References

  1. IAEA, Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments, in: Technical Reports Series N. 472, IAEA, Vienna, 2010.
  2. N.E. Adesiji, J.A. Ademola, Soil-to-maize transfer factor of natural radionuclides in a tropical ecosystem of Nigeria, Niger. J. Pure Appl. Phys. (NJPAP) 9 (2019) 6-10. https://doi.org/10.4314/njpap.v9i1.2
  3. B.N. Thien, V.N. Ba, N.T.T. Vy, T.T.H. Loan, Estimation of the soil to plant transfer factor and the annual organ equivalent dose due to ingestion of food crops in Ho Chi Minh city, Vietnam, Chemosphere 259 (2020), 127432.
  4. F. Carini, G. Bengtsson, Post-deposition transport of radionuclides in fruit, J. Environ. Radioact. 52 (2001) 215-236. https://doi.org/10.1016/S0265-931X(00)00034-5
  5. H.N. Pahalvi, L. Rafiya, S. Rashid, B. Nisar, A.N. Kamili, Chemical fertilizers and their impact on soil health, Microbiota Biofert. 2 (2021) 1-20.
  6. A. Ciocarlan, G. Hristozova, A. Aricu, I. Dragalin, I. Zinicovscaia, N. Yushin, D. Grozdov, V. Popescu, Determination of the elemental composition of aromatic plants cultivated industrially in the Republic of Moldova using neutron activation analysis, Agronomy 11 (2021) 1011.
  7. S.B. Goldhaber, Trace element risk assessment: essentiality vs. toxicity, Regul. Toxicol. Pharmacol. 38 (2003) 232-242. https://doi.org/10.1016/S0273-2300(02)00020-X
  8. WHO, Quality Control Methods for Medicinal Plant Materials, Revised, Geneva, 2005a.
  9. A.M. Zayed, N. Terry, Chromium in the environment: factors affecting biological remediation, Plant Soil 249 (2003) 139-156. https://doi.org/10.1023/A:1022504826342
  10. B.E. Kogo, Neutron activation analysis of leaf samples from different parts of Abuja metropolis, Middle East J. Sci. Res. 4 (2009) 245-253.
  11. C.B. Rekha, Somshuvra Mukhopadhyay, Danielle McBride, Jennifer Veevers, Fiona E. Harrison, Michael Aschner, Erin N. Haynes, Aaron B. Bowman, Brain manganese and the balance between essential roles and neurotoxicity, J. Biol. Chem. 295 (2020) 6312-6329. https://doi.org/10.1074/jbc.REV119.009453
  12. H. Merzenich, A. Hartwig, W. Ahrens, D. Beyersmann, R. Schlepegrell, M. Scholze, J. Timm, K.H. Jockel, Biomonitoring on carcinogenic metals and oxidative DNA damage in a cross-sectional study, Cancer Epidemiol. Biomarkers Prev. 10 (5) (2001) 515-522.
  13. A. Hartwig, R. Schlepegrell, D. Beyersmann, Indirect mechanism of lead-induced genotoxicity in cultured mammalian cells, Mutat. Res. 241 (1) (1990) 75-82. https://doi.org/10.1016/0165-1218(90)90110-N
  14. E. Al-Absi, T. Al-Abdullah, H. Shehadeh, J. Aijundi, 226Ra, 228Ra, and 40K activity concentration in some vegetables consumed in Jordan, and resultant annual Fig. 1. K/Na ratio comparison. ingestion effective dose, Radiat. Protect. Environ. 38 (2015) 29-34. https://doi.org/10.4103/0972-0464.162819
  15. R.P. Chauhan, A. Kumar, Soil to plant transfer of alpha activity in potato plants: impact of phosphate fertilizers, J. Environ. Health Sci. Eng. 13 (2015) 45, 2015.
  16. C.M. Ayyub, M. Wasim Haidar, F. Zulfiqar, Z. Abideen, S.R. Wright, Potato tuber yield and quality in response to Di_erent nitrogen fertilizer application rates under two split doses in an irrigated sandy loam soil, J. Plant Nutr. 42 (2019) 1850-1860. https://doi.org/10.1080/01904167.2019.1648669
  17. Y. Zhang, H.B. Meng, Y.J. Shen, J. Li, J.R. Wang, H.B. Zhou, et al., Survey on heavy metal concentrations and maturity indices of organic fertilizer in China, Int. J. Agric. Biol. Eng. 11 (2018) 172-179.
  18. M. Keisham, S. Mukherjee, S.C. Bhatla, Mechanisms of sodium transport in plants-progresses and challenges, Int. J. Mol. Sci. 19 (2018) 647.
  19. R. Munns, M. Tester, Mechanisms of salinity tolerance, Annu. Rev. Plant Biol. 59 (2008) 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  20. L. Currie, Limits for qualitative detection and quantitative determination. Application to radiochemistry, Anal. Chem. 40 (3) (1968) 586-593. https://doi.org/10.1021/ac60259a007
  21. T.T.H. Loan, V.N. Ba, N.T. Bang, T.H.N. Thy, H.T.Y. Hong, Natural radioactivity and radiological health hazard assessment of chemical fertilizers in Viet Nam, J. Radioanal. Nucl. Chem. 316 (2018) 111-117, 2018. https://doi.org/10.1007/s10967-018-5719-2
  22. M.D. Ho, Q.T. Tran, V.D. Ho, D.V. Cao, T.S. Nguyen, Quality evaluation of the k 0-standardized neutron activation analysis at the Dalat research reactor, J. Radioanal. Nucl. Chem. 309 (2016a) 135-143. https://doi.org/10.1007/s10967-016-4795-4
  23. M.D. Ho, Q.T. Tran, V.D. Ho, T.S. Nguyen, Determination of multi-element composition of Vietnamese marine sediment and tuna fish by k-0 standardized neutron activation analysis, J. Radioanal. Nucl. Chem. 309 (2016b) 235-241. https://doi.org/10.1007/s10967-016-4761-1
  24. H. Duong Van, T.D. Nguyen, A. Peka, M. Hegedus, A. Csordas, T. Kovacs, Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops, J. Environ. Radioact. 223-224 (2020), 106416.
  25. V.N. Ba, N. Van Thang, N.Q. Dao, H.N.P. Thu, T.T.H. Loan, Study on the characteristics of natural radionuclides in surface soil in Ho Chi Minh City, Vietnam and radiological health hazard, Environ. Earth Sci. 78 (2019) 28.
  26. F.V. Tome, M.P.B. Rodriguez, J.C. Lozano, Soil-to-plant transfer factors for natural radionuclides and stable elements in a Mediterranean area, J. Environ. Radioact. 65 (2003) 161-175. https://doi.org/10.1016/S0265-931X(02)00094-2
  27. R.A. Leigh, R.G.A. Wyn Jones, Hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell, New Phytol. 97 (1984) 1-13. https://doi.org/10.1111/j.1469-8137.1984.tb04103.x
  28. H. Marschner, Mineral Nutrition of Higher Plants, Academic Press Ltd., London, UK, 1995a, pp. 1-889.
  29. K. Prajapati, H.A. Modi, The importance of potassium in plant growth- a review, Indian J. Plant Sci. 1 (2012) 177-186.
  30. E.F. Santos, N.S. Mateus, M.O. Rosario, T.B. Garcez, P. Mazzafera, J. Lavres, Enhancing potassium content in leaves and stems improves drought tolerance of eucalyptus clones, Physiol. Plantarum (2020), https://doi.org/10.1111/ppl.13228.
  31. J.P. James, B.N. Dileep, P.M. Ravi, R.M. Joshi, T.L. Ajith, A.G. Hegde, P.K. Sarkar, Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region, India, J. Environ. Radioact. 102 (2011) 1070-1077. https://doi.org/10.1016/j.jenvrad.2011.07.011
  32. R. Mudbidre, M. Baskaran, L. Schweitzer, Investigations of the partitioning and residence times of Po-210 and Pb-210 in a riverine system in Southeast Michigan, USA, J. Environ. Radioact. 138 (2014) 375-383. https://doi.org/10.1016/j.jenvrad.2014.01.007
  33. Masayoshi Yamamoto, Aya Sakaguchi, Keiichi Sasaki, Katsumi Hirose, Yasuhito Igarashi, Kyu Kim Chang, Seasonal and spatial variation of atmospheric 210Pb and 7Be deposition: features of the Japan Sea side of Japan, J. Environ. Radioact. 86 (1) (2006) 110-131. https://doi.org/10.1016/j.jenvrad.2005.08.001
  34. J.J. Koranda, W.L. Robison, Accumulation of radionuclides by plants as a monitor system, Environ. Health Perspect. 27 (1978) 165-179. https://doi.org/10.1289/ehp.7827165
  35. FAO/WHO, Contaminants, in: 1Codex Alimentarius, vol. XVII, FAO/WHO codex Commissopn, Rome, 1984.
  36. S. Jabeen, M.T. Shah, S. Khan, M.Q. Hayat, Determination of major and trace elements in ten important folk therapeutic plants of Haripur basin, Pakistan, J. Med. Plants Res. 4 (2010) 559-566.
  37. Ministry of Health, Regulation of Maximum Level of Biological and Chemical Pollution in Food, No. 46/2007, QD-BYT, Vietnam, 2007.
  38. F.J. He, G.A. Mac Gregor, Beneficial effects of potassium on human health, Physiol. Plantarum 133 (4) (2008) 725-735. https://doi.org/10.1111/j.1399-3054.2007.01033.x
  39. T.T. Van, L.T. Bat, D.D. Nhan, N.H. Quang, B.D. Cam, L.V. Hung, Estimation of radionuclide concentrations and average annual committed effective dose due to ingestion for the population in the red river delta, Vietnam, Environ. Manag. 63 (2019) 444-454. https://doi.org/10.1007/s00267-018-1007-8
  40. K. Mengel, E.A. Kirkby, Principles of Plant Nutrition, third ed., International Potash Institute, Bern, 1982.
  41. I.P. Ting, Plant mineral nutrition and ion uptake, in: Plant Physiology, Addison-Wesley, Reading, Masschusetts, 1982, pp. 331-363.
  42. J. McGrath, J. Spargo, C. Penn, Soil fertility and plant nutrition, Encycl. Agric. Food Syst. 5 (2014) 166-184. https://doi.org/10.1016/B978-0-444-52512-3.00249-7
  43. G. DalCorso, A. Manara, S. Piasentin, A. Furini, Nutrient metal elements in plants, Metallomics 6 (10) (2014) 1770-1788. https://doi.org/10.1039/C4MT00173G
  44. R. Hansch, R.R. Mendel, Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B Cl), Curr. Opin. Plant Biol. 12 (2009) 259-266. https://doi.org/10.1016/j.pbi.2009.05.006
  45. N.M. Bezerril Fontenele, M.D.L.O. Otoch, N.F. Gomes-Rochette, et al., Effect of lead on physiological and antioxidant responses in two, Vigna unguiculata, cultivars differing in Pb-accumulation, Chemosphere 176 (2017) 397-404. https://doi.org/10.1016/j.chemosphere.2017.02.072
  46. C. Arena, F. Figlioli, C. SorrentinoM, et al., Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in, Cynara cardunculus, L. and its potential for phytoremediation, Ecotoxicol. Environ. Saf. 145 (2017) 83-89. https://doi.org/10.1016/j.ecoenv.2017.07.015
  47. Y. Zhu, H. Yu, J. Wang, et al., Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn), J. Agric. Food Chem. 55 (3) (2007) 1045-1052. https://doi.org/10.1021/jf062971p
  48. R. Gopal, B.K. Dube, P. Sinha, C. Chatterjee, Cobalt toxicity effects on growth and metabolism of tomato, Commun, Soil Sci. Plant Anal. 34 (2003) 619-628. https://doi.org/10.1081/CSS-120018963
  49. Chatterjee, C. Chatterjee, Phytotoxicity of cobalt, chromium and copper in cauliflower, Environ. Pollut. 109 (2000) 69-74. https://doi.org/10.1016/S0269-7491(99)00238-9
  50. WHO, Revised, in: M.K. Wong, P. Tan, Wee (Eds.), Quality Control Methods for Medicinal Plant Materials, 2005 (Geneva).
  51. B.G. Hua, R.W. Mercier, Q. Leng, G.A. Berkowitz, Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel, Plant Physiol. 132 (2003) 1353-1361. https://doi.org/10.1104/pp.103.020560
  52. J.P. Martinez, J.M. Kinet, M. Bajji, S. Lutts, NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L, J. Exp. Bot. 56 (2005) 2421-2431. https://doi.org/10.1093/jxb/eri235
  53. H. Marschner, Mineral Nutrition of Higher Plants, Academic Press, London, 1995b.
  54. M.A. Kader, T. Seidel, D. Golldack, S. Lindberg, Expressions of OsHKT1, OsHKT2, and OsVHAare differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars, J. Exp. Bot. 57 (15) (2006) 4257-4268. https://doi.org/10.1093/jxb/erl199
  55. B. Garciadeblas, M.E. Senn, M.A. Banuelos, A. Rodriguez-Navarro, Sodium transport and HKTtransporters: the rice model, Plant J. 34 (6) (2003) 788-801. https://doi.org/10.1046/j.1365-313X.2003.01764.x
  56. A.K. Patra, Studies on the biological translocation of major and trace elements in Kaiga environment, in: PhD Thesis, Mangalore University, 2005.